侵权投诉

射频电路设计的注意事项、屏蔽方法以及走线与地

传感器技术 2017-12-18 14:21 次阅读

1、射频电路中元器件封装的注意事项

成功的RF设计必须仔细注意整个设计过程中每个步骤及每个细节,这意味着必须在设计开始阶段就要进行彻底的、仔细的规划,并对每个设计步骤的进展进行全面持续的评估。而这种细致的设计技巧正是国内大多数电子企业文化所欠缺的。

近几年来,由于蓝牙设备、无线局域网络(WLAN)设备,和移动电话的需求与成长,促使业者越来越关注RF电路设计的技巧。从过去到现在,RF电路板设计如同电磁干扰(EMI)问题一样,一直是工程师们最难掌控的部份,甚至是梦魇。若想要一次就设计成功,必须事先仔细规划和注重细节才能奏效。

射频(RF)电路板设计由于在理论上还有很多不确定性,因此常被形容为一种「黑色艺术」(black art) 。但这只是一种以偏盖全的观点,RF电路板设计还是有许多可以遵循的法则。不过,在实际设计时,真正实用的技巧是当这些法则因各种限制而无法实施时,如何对它们进行折衷处理。重要的RF设计课题包括:阻抗和阻抗匹配、绝缘层材料和层叠板、波长和谐波...等。

该视频是描述了射频电路中,新建电路元器件封装大小的注意事项。

在 WiFi 产品的开发过程中,射频电路的布线(RF Circuit Layout Guide)是极为关键的一个过程。很多时候,我们可能在原理上已经设计的很完善,但是在实际的制板,上件过后发现很不理想,实际上这些都是布线(Layout)做的不够完善的原因。本文将以一个无线网卡的布线实例及本人的一点工作经验为大家讲解一下射频电路在布线中应该注意的一些问题。

电路板的叠构(PCB Stack Up)

在进行布线之前,我们首先要确定电路板的叠构,就像盖房子要先有房子的墙壁。电路板的叠构的确定与电路设计的复杂度,电磁兼容的考虑等很多因素有关。下图给出了四层板,六层板和八层板的常用叠构方式。

射频电路设计的注意事项、屏蔽方法以及走线与地

在无线网卡的PCB叠构中,基本上不会出现单面板的情况,所以本文也不会对单面板的情况加以讨论。

两层板设计中应该注意的问题。

在四层板的设计中,我们一般会将第二层作为完整的地平面,同时,也会把重要的信号线走在顶层(当然包括射频走线),以便于很好的控制阻抗。在六层板或者更多层板的设计中,我们同样会将第二层作为完整的地平面,然后在顶层走最重要的信号线。

PS:可以使用Polar计算单端阻抗与阻抗等,有些Layout软件自身就集成了阻抗计算器,如Allegro

阻抗控制

在我们进行原理设计与仿真之后,在Layout中很值得注意的一件事情就是阻抗控制。众所周知,我们应该尽量保证走线的特征是50欧姆,这主要和线宽有关,在本实例中,是两层半,在Polar中采用Surface Coplanar Line模型进行阻抗的计算,我们可以得到一组比较理想的值:Height(H)=39.6mil, Track(W)=30mil, Track(W1)=30mil,Thickness=1OZ=1.4mil, Separation(S)=7mil, Dielectric(Er)=4.2,对应的特征阻抗是52.14欧姆,符合要求。如下图中高亮的线就是这样的一条射频走线。

射频元器件的摆放

相信做过射频设计的人都应该知道,我们应该尽可能的使走线的长度较短,元器件摆放的越紧凑越好(特殊要求除外),同时,也会尽可能的保证元器件的摆放对布线很有利(不要使走线绕来绕去的)。如下图,是射频功率放大器(PA,Power Amplifier)的周围器件的摆放,我们看到,元器件之间的距离很小。

射频电路设计的注意事项、屏蔽方法以及走线与地

射频走线应该注意的问题

如前所述,射频走线的长度要尽量短,线宽严格按照计算好的值去设定。在走线是尤其要注意的是,射频走线中不要有任何带有尖状的折点,在走线的转折处,最好要用弧线来实现,如下图

其次,在多层板的走线中,有可能重要的射频线要产生不可避免的交叉,这时我们就要使用我们最不想使用的东西:过孔。这样,会有部分射频信号线走到底层甚至中间层,但无论是哪一层,射频走线一定会有参考平面,这时一个值得注意的问题就是不要跨层,或者说不要使地平面不连续。

过孔的放置

过孔的放置真的是一件比较复杂的事情,本文只讨论那种接地的过孔。

首先,射频走线的旁边的地线最好能通过过孔打穿,接到底层或者中间层的地平面上,这样可以是任何干扰信号或者辐射有最短的到地的通路,但是,过孔与射频信号线的距离又不能太近,否则会严重影响射频信号质量,在实际的设计过程中可灵活把握,如下图,我们看到,高亮的信号线两层分布着很多过孔。

其次,在面积较大的地平面处,我们通常会放置很多的过孔用于连接不同层的地。这在射频电路的布线中,要注意的就是大过孔要没有规律的打,最好能弄成菱形的,这样可以最大限度的抑制各种干扰。

2、射频电路电源设计注意事项

(1)电源线是EMI 出入电路的重要途径。通过电源线,外界的干扰可以传入内部电路,影响RF电路指标。为了减少电磁辐射和耦合,要求DC-DC模块的一次侧、二次侧、负载侧环路面积最小。电源电路不管形式有多复杂,其大电流环路都要尽可能小。电源线和地线总是要很近放置。

(2)如果电路中使用了开关电源开关电源的外围器件布局要符合各功率回流路径最短的原则。滤波电容要靠近开关电源相关引脚。 使用共模电感,靠近开关电源模块。

(3)单板上长距离的电源线不能同时接近或穿过级联放大器(增益大于45dB)的输出和输入端附近。避免电源线成为RF信号传输途径,可能引起自激或降低扇区隔离度。长距离电源线的两端都需要加上高频滤波电容,甚至中间也加高频滤波电容。

(4)RF PCB的电源入口处组合并联三个滤波电容,利用这三种电容的各自优点分别滤除电源线上的低、中、高频。例如:10uf,0.1uf,100pf。并且按照从大到小的顺序依次靠近电源的输入管脚。

(5)用同一组电源给小信号级联放大器馈电,应当先从末级开始,依次向前级供电,使末级电路产生的EMI 对前级的影响较小。且每一级的电源滤波至少有两个电容:0.1uf,100pf。 当信号频率高于1GHz时,要增加10pf滤波电容。

(6)常用到小功率电子滤波器,滤波电容要靠近三极管管脚,高频滤波电容更靠近管脚。三极管选用截止频率较低的。如果电子滤波器中的三极管是高频管,工作在放大区,外围器件布局又不合理,在电源输出端很容易产生高频振荡。线性稳压模块也可能存在同样的问题,原因是芯片内存在反馈回路,且内部三极管工作在放大区。在布局时要求高频滤波电容靠近管脚,减小分布电感,破坏振荡条件。

(7)PCB的POWER部分的铜箔尺寸符合其流过的最大电流,并考虑余量(一般参考为1A/mm线宽)。

(8)电源线的输入输出不能交叉。

(9)注意电源退耦、滤波,防止不同单元通过电源线产生干扰,电源布线时电源线之间应相互隔离。电源线与其它强干扰线(如CLK)用地线隔离。

(10)小信号放大器的电源布线需要地铜皮及接地过孔隔离,避免其它EMI干扰窜入,进而恶化本级信号质量。

(11)不同电源层在空间上要避免重叠。主要是为了减少不同电源之间的干扰,特别是一些电压相差很大的电源之间,电源平面的重叠问题一定要设法避免,难以避免时可考虑中间隔地层。

(12)PCB板层分配便于简化后续的布线处理,对于一个四层PCB板(WLAN中常用的电路板),在大多数应用中用电路板的顶层放置元器件和RF引线,第二层作为系统地,电源部分放置在第三层,任何信号线都可以分布在第四层。

第二层采用连续的地平面布局对于建立阻抗受控的RF信号通路非常必要,它还便于获得尽可能短的地环路,为第一层和第三层提供高度的电气隔离,使得两层之间的耦合最小。当然,也可以采用其它板层定义的方式(特别是在电路板具有不同的层数时),但上述结构是经过验证的一个成功范例。

(13)大面积的电源层能够使Vcc布线变得轻松,但是,这种结构常常是引发系统性能恶化的导火索,在一个较大平面上把所有电源引线接在一起将无法避免引脚之间的噪声传输。反之,如果使用星型拓扑则会减轻不同电源引脚之间的耦合。

上图给出了星型连接的Vcc布线方案,该图取自MAX2826 IEEE 802.11a/g收发器评估板。图中建立了一个主Vcc节点,从该点引出不同分支的电源线,为RF IC的电源引脚供电。每个电源引脚使用独立的引线在引脚之间提供了空间上的隔离,有利于减小它们之间的耦合。另外,每条引线还具有一定的寄生电感,这恰好是我们所希望的,它有助于滤除电源线上的高频噪声。

使用星型拓扑Vcc引线时,还有必要采取适当的电源去耦,而去耦电容存在一定的寄生电感。事实上,电容等效为一个串联的RLC电路,电容在低频段起主导作用,但在自激振荡频率(SRF):

之后,电容的阻抗将呈现出电感性。由此可见,电容器只是在频率接近或低于其SRF时才具有去耦作用,在这些频点电容表现为低阻。

射频电路设计的注意事项、屏蔽方法以及走线与地

给出了不同容值下的典型S11参数,从这些曲线可以清楚地看到SRF,还可以看出电容越大,在较低频率处所提供的去耦性能越好(所呈现的阻抗越低)。

在Vcc星型拓扑的主节点处最好放置一个大容量的电容器,如2.2μF。该电容具有较低的SRF,对于消除低频噪声、建立稳定的直流电压很有效。IC的每个电源引脚需要一个低容量的电容器(如10nF),用来滤除可能耦合到电源线上的高频噪声。对于那些为噪声敏感电路供电的电源引脚,可能需要外接两个旁路电容。例如:用一个10pF电容与一个10nF电容并联提供旁路,可以提供更宽频率范围的去耦,尽量消除噪声对电源电压的影响。每个电源引脚都需要认真检验,以确定需要多大的去耦电容以及实际电路在哪些频点容易受到噪声的干扰。

良好的电源去耦技术与严谨的PCB布局、Vcc引线(星型拓扑)相结合,能够为任何RF系统设计奠定稳固的基础。尽管实际设计中还会存在降低系统性能指标的其它因素,但是,拥有一个“无噪声”的电源是优化系统性能的基本要素.

3、射频PCB设计的EMC规范

1 层分布

1.1 双面板,顶层为信号层,底面为地平面。

1.2 四层板,顶层为信号层,第二层为地平面,第三层走电源、控制线。特殊情况下(如 射频信号线要穿过屏蔽壁),在第三层要走一些射频信号线。每层均要求大面积敷地。

1.2 四层板,顶层为信号层,第二层为地平面,第三层走电源、控制线。特殊情况下(如 射频信号线要穿过屏蔽壁),在第三层要走一些射频信号线。每层均要求大面积敷地。

2 接地

2.1 大面积接地 为减少地平面的阻抗,达到良好的接地效果,建议遵守以下要求: a) 射频 PCB 的接地要求大面积接地; b) 在微带印制电路中,底面为接地面,必须确保光滑平整; c) 要将地的接触面镀金或镀银,导电良好,以降低地线最抗; d) 使用紧固螺钉,使其与屏蔽腔体紧密结合,紧固螺钉的间距小于λ/20(依具体情 况而定)。

2.2 分组就近接地 按照电路的结构分布和电流的大小将整个电路分为成相对独立的几组,各组电路就 近接地形成回路,要调整各组内高频滤波电容方向,缩小电源回路。注意接地线要短而直, 禁止交叉重叠,减少公共地阻抗所产生的干扰。

2.3 射频器件的接地 表面贴射频器件和滤波电容需要接地时,为减少器件接地电感,要求: a) 至少要有 2 根线接铺地铜箔; b) 用至少 2 个金属化过孔在器件管脚旁就近接地。 c) 增大过孔孔径和并联若干过孔。 d) 有些元件的底部是接地的金属壳,要在元件的投影区内加一些接地孔,表面层 不得布线。

2.4 微带电路的接地 微带印制电路的终端单一接地孔直径必须大于微带线宽,或采用终端大量成排密布小孔 的方式接地。

2.5 接地工艺性要求

a) 在工艺允许的前提下,可缩短焊盘与过孔之间的距离;

b) 在工艺允许的前提下,接地的大焊盘可直接盖在至少 6 个接地过孔上(具体数量因 焊盘大小而异);

c) 接地线需要走一定的距离时,应缩短走线长度,禁止超过λ/20,以防止天线效应 导致信号辐射;

d) 除特殊用途外,不得有孤立铜箔,铜箔上一定要加地线过孔;

e) 禁止地线铜箔上伸出终端开路的线头。

3 屏蔽

3.1 射频信号可以在空气介质中辐射。空间距离越大,工作频率越低,输入输出端的寄 生耦合就越小,隔离度则越大。PCB 典型的空间隔离度约为 50dB。

3.2 敏感电路和强烈辐射源电路要加屏蔽,但如果设计加工有难度时(如空间或成本限 制等),可不加,但要做试验最终决定。这些电路有:

a) 接收电路前端是敏感电路,信号很小,要采用屏蔽。

b) 对射频单元和中频单元须加屏蔽。接收通道中频信号会对射频信号产生较大干扰, 反之,发射通道的射频信号对中频信号也会造成辐射干扰。

c) 振荡电路:强烈辐射源,对本振源要单独屏蔽,由于本振电平较高,对其他单元形 成较大的辐射干扰。

d) 功放及天馈电路:强烈辐射源,信号很强,要屏蔽。

e) 数字信号处理电路:强烈辐射源,高速数字信号的陡峭的上下沿会对模拟的射频信 号产生干扰。

f) 级联放大电路:总增益可能会超过输出到输入端的空间隔离度,这样就满足了振荡 条件之一,电路可能自激。如果腔体内的电路同频增益超过 30-50dB,必须在 PCB 板 上焊接或安装金属屏蔽板,增加隔离度。实际设计时要综合考虑频率、功率、增益情况 决定是否加屏蔽板。

g) 级联的滤波、开关、衰减电路:在同一个屏蔽腔内,级联滤波电路的带外衰减、级 联开关电路的隔离度、级联衰减电路的衰减量必须小于 30-50dB。如果超过这个值, 必须在 PCB 板上焊接或安装金属屏蔽板,增加隔离度。实际设计时要综合考虑频率、功 率、增益情况决定是否加屏蔽板。

h) 收发单元混排时应屏蔽。

i) 数模混排时,对时钟线要包地铜皮隔离或屏蔽。

4 屏蔽材料和方法

4.1 常用的屏蔽材料均为高导电性能材料,如铜板、铜箔、铝板、铝箔。钢板或金属镀 层、导电涂层等。

4.2 静电屏蔽主要用于防止静电场和恒定磁场的影响。应注意两个基本要点,即完善的 屏蔽体和良好的接地性。

4.3 电磁屏蔽主要用于防止交变磁场或交变电磁场的影响,要求屏蔽体具有良好的导电 连续性,屏蔽体必须与电路接在共同的地参考平面上,要求 PCB 中屏蔽地与被屏蔽电路地要 尽量的接近。

4.4 对某些敏感电路,有强烈辐射源的电路可以设计一个在 PCB 上焊接的屏蔽腔,PCB 在 设计时要加上“过孔屏蔽墙”,就是在 PCB 上与屏蔽腔壁紧贴的部位加上接地的过孔。要求 如下:

a) 有两排以上的过孔;

b) 两排过孔相互错开;

c) 同一排的过孔间距要小于λ/20;

d) 接地的 PCB 铜箔与屏蔽腔壁压接的部位禁止有阻焊。

4.5 射频信号线在顶层穿过屏蔽壁时,要在屏蔽腔相应位置开一个槽门,门高大于 0.5mm, 门宽要保证安装屏蔽壁后信号线与屏蔽体间的距离大于 1mm。

5 屏蔽罩设计

5.1 金属屏蔽腔的基本结构

5.1.1 此类屏蔽罩被广泛使用,如图 27。材料一般为薄的铝合金,制造工艺一般采用冲 压折弯或压力铸造工艺,这种屏蔽罩有较多的螺钉孔,便于螺钉固定。部分需铝合金盖子和 吸波材料增强屏蔽性能。射频 PCB 需装在屏蔽腔内,要选择合适的屏蔽腔尺寸,使其最低 谐振频率远高于工作频率,最好 10 倍以上,详见附录 G“金属屏蔽腔的尺寸设计”。

5.1.2 屏蔽腔的高度一般为第一层介质厚度 15-20 倍或以上,在屏蔽腔面积一定时,要 提高屏蔽腔的最低谐振频率,需增加长宽比,避免正方形的腔体,如图 。

5.2.1 屏蔽罩与 PCB 板接触的罩体设计时应考虑 PCB bottom 面的器件高度,特别是插 件器件引脚伸出的高度。

5.2.2 需考虑螺丝禁布区的大小,防止组装时损坏表层线路或器件。射频功放板由于结 构尺寸的限制,其单板尺寸相对较小,故一般要求螺钉安装空间(禁布区)至少在安装孔焊 盘外侧。螺钉安装空间见表 5

射频电路设计的注意事项、屏蔽方法以及走线与地

5.2.4 尽可能保证屏蔽罩的完整非常重要,进入金属屏蔽罩的数字信号线应该尽可能走 内层,RF 信号线可以从金属屏蔽罩底部的小缺口和地缺口处的布线层上走出去,不过缺口 处周围要尽可能地多布一些地,不同层上的地可通过多个过孔连在一起。

5.2.5 为保证装配和返修,金属屏蔽罩周围5mm范围内不能有超过其高度的器件,Chip 小器件到屏蔽罩的距离应该2mm以上,其它器件距离要求3mm以上,并且放置朝向最好 符合方便维修方向。

5.2.6 金属屏蔽罩内部不能有超过其高度的器件,并且器件顶部到屏蔽罩面的距离要符 合安全规范要求。

5.2.7 需考虑 SMA 微带插座与 PCB 板接触时的高度匹配,否则焊接可靠性存在影响。 如图29所示,设计时须考虑PCB板厚的公差(±10%),金属屏蔽腔的加工误差(±0.05mm)。 建议 SMA 微带插座与 PCB 板的高度间隙不超过 0.5mm,插座与焊盘不允许有明显偏差。

4、射频走线与地

举个例子来说吧。我们将对多层电路板进行射频线仿真,为了更好的做出对比,将仿真的PCB分为表层铺地前的和铺地后的两块板分别进行仿真对比;表层未铺地的PCB文件如下图1所示(两种线宽):

图1a:线宽0.1016 mm的射频线(表层铺地前)

图1b:线宽0.35 mm的射频线(表层铺地前)

图1:表层未铺过地的PCB

首先将线宽不同的两块板(表层铺地前)由ALLEGRO导入SIWAVE,在目标线上加入50Ω端口。针对不同线宽0.1016mm和0.35mm, 我们的仿真结果如图2所示,图中显示的曲线是S21,仿真频率范围为800MHz-1GHz。

图2a:表层未铺地的S21 (线宽0.1016mm)

图2b:表层未铺地的S21 (线宽0.35mm)

图2:表层未铺地的S21

由图中可以看到,在800MHz-1GHz的范围内,仿真的数据展示为小数点后一到两位的数量级,0.35mm的损耗要比0.1016mm的线小一个数量 级,这是因为0.35mm的线宽在该板的层叠条件下其特征阻抗接近50Ω。 因此间接验证了我们所做的阻抗计算(用线宽约束)是有一定作用的。

接下来我们做了表层铺地后的同样的仿真(800MHz-1GHz),导入的PCB文件如下图。

图3a:0.1016 mm的射频线(表层铺地)

图3b:0.35 mm的射频线(表层铺地)

图3:表层铺过地后的PCB

仿真结果如下图:射频电路设计的注意事项、屏蔽方法以及走线与地

图4a:表层铺地后的S21 (0.1016mm)

图4b:表层铺地后的S21 (0.35mm)

图4:表层铺过地后的S21

由图中看到,仿真的数据显示,该传输线的线损已经是1-2 dB的数量级了,当然0.35 mm的损耗要明显小于0.1016 mm的。另外一个明显的现象是相对于未铺地的仿真结果,随着频率由800MHz到1GHz的增加,损耗趋大。

我们可以从仿真的结果中得到这样一个结果:

1.射频走线最好按50欧姆走,可以减小线损;

2.表层的铺地事实上是将一部分RF信号能量耦合到了地上,造成了一定的损耗。因此PCB表层的铺地应该有所讲究。尽量远离RF线。工程经验是大于1.5倍的线宽。

【5】设计checklist

大类

小类

编号

要素描述

通用

布局

1

ESD防护元件直接放在主信号路径上。

2

模块分腔屏蔽合理,己关注腔体自谐振频率。

3

屏蔽墙及内倒角位置的顶面是布局、布线、信号过孔禁布区。

4

匹配元件靠近相关的RF器件端口布局

5

已考虑热设计,保证热量不集中,散热容易。

6

RF主信号流一字布局,如果受空间限制,不能一字布局时,可以采用L形布局,慎用U形布局。

7

对绕线电感的布局必须要保证相邻电感的磁力线相互垂直,对印制线类电感(LTCC工艺)如做不到磁力线相互垂直,应该远离放置。

8

分立元件构成的组合电路,不被其它元件或传输线打散,例如电阻衰减器的三个电阻布局互相靠近。滤波器电路要一面布局,并且不能被其它传输线打散。

9

高中低频组合滤波,高频小容量滤波电容最靠近器件管脚。

10

PCB螺钉数量和布局合理。

11

功放PCB开窗综合考虑了安装余量和电气性能。

12

功放可变电容、隔直电容位置己按原理图设计者要求布局。

13

元件离屏蔽壁间距符合要求,考虑了误差。

14

射频PCB的输入输出和其它部分的接口是否满足设计要求。

15

在正常工作或测试环境下,没有Stub。

17

数字芯片PWM调制输出直流的RC滤波电路,放置在数字芯片侧。

18

腔内同频增益超过40dB级联放大电路需进行了分腔。例如:接收通道的增益一般会很大,需要进行分腔

19

级联衰减电路的衰减量大于40dB的电路需进行分腔。

20

级联滤波电路的带外衰减和级联开关电路的隔离度大于40dB,则需要分腔。

21

射频电源的分配一般按照就近供电的原则,以免相互之间产生干扰。同时,在不同芯片共用同一个电源芯片时,要注意芯片之间是否会通过电源产生干扰。

22

电源的摆放位置是否合适,要保证输入输出电源线不能交叉,走线距离最短。

23

电源输入口的滤波电容是否靠近输入管脚,并且按照从大到小的顺序排列,容值最小的电容最靠近电源的输入管脚。

24

器件DATASHEET上有特殊要求的布局是否满足。

布线

1

布RF线需要进行控制走线阻抗,将它们布得尽可能直接,这样可以减小损耗和不期望得到的耦合。

2

微带线下方需要连续的地,同样的,带状线上方和下方也需要连续的地;地平面不仅提供需要的回路,还可以将信号跟其它信号层隔离;

3

长的、没有屏蔽的走线,如RF前端的连线需要用带状线,这样有利于使用固有的屏蔽。

4

避免在内层和外层多次来回走线;

5

当RF信号线在不同层之间过渡时,过孔需要远离潜在的干扰电路、走线及过孔(比如数字控制线、时钟、电源等);确保射频过孔和干扰路径之间铺地并加地过孔,起隔离作用。

6

时钟线、数据线、控制线之间的距离需满足3W原则。如果空间允许,尽量拉开线间距离。

7

走线要最短,不能闭环,不能有锐角和直角。

8

晶振表面以下不能有过孔和走线。频综、pll滤波器件、VCO、滤波器和电感下表面不能走线。

9

模拟信号与数字信号,电源线与控制信号线,弱信号与其他任何信号需要分层(最好有地隔离)或相距较远走线。如果分层相邻层的线与线之间不能并行走线,最好垂直走线。如果没有分层线间的距离是要满足隔离度的要求,至少满足线距大于3W。

10

射频敏感信号不能靠近强辐射信号。

11

差分信号线需对称走线,线长相差不能超过100mil,差分线对间的间距需满足3W规则。

12

输入输出阻抗不是50欧姆的器件,输入输出阻抗线需满足阻抗匹配要求。

13

在原理图中,有特殊要求的阻抗线需满足原理图的设计要求。

14

不同单元电源线布线时,电源线之间需相互隔离,以免各单元电路通过电源相互干扰。

15

不同电源层在空间上不能重叠,如果重叠需要有地层隔离。

16

电源的走线线宽要满足电流的通流量要求。(一般参考为1A/mm线宽)

17

RF信号布线周围如果存在其它RF信号线,在两者之间需辅地铜皮,并打地过孔。

18

电源部分导线印制线在层间转接的过孔数符合通过电流的要求(1A/Ф0.3mm孔)。

19

RF信号布线周围如果存在其它不相关的非RF信号(如过路电源线),在两者之间需辅地铜皮,并打地过孔。

20

小信号放大器的电源布线需要地铜皮及接地过孔隔离,避免其它EMI干扰窜入,进而恶化本级信号质量。

21

接地线要短而直,减少分布电感,减小公共地阻抗所产生的干扰。

22

RF 主信号路径上的接地器件和电源滤波电容需要接地时,为减小器件接地电感,要求就近接地。

23

有些元件的底部是接地的金属壳,要在元件的投影区内加一些接地孔,投影区内的表面层不得布信号线和过孔;

24

接地线需要走一定的距离时,应加粗走线线宽、缩短走线长度,禁止接近和超过1/4导引波长,以防止天线效应导致信号辐射;

25

除特殊用途外,不得有孤立铜皮,铜皮上一定要加地线过孔。

26

对某些敏感电路、有强烈辐射源的电路分别放在屏蔽腔内,装配时屏蔽腔压在PCB表面。PCB在设计时要加上“过孔屏蔽墙”,就是在PCB上与屏蔽腔壁紧贴的部位加上接地的过孔。要有两排以上的过孔,两排过孔相互错开,同一排的过孔间距在100mils左右。

27

一些RF器件封装较小,SMD焊盘宽度可能小至12mils,而RF信号线宽可能达50mils以上,要用渐变线,禁止线宽突变,且过渡部分的线不宜太长。

28

当50欧细微带线上有大焊盘时,大焊盘相当于分布电容,破坏了微带线的特性阻抗连续性。需将焊盘下方的地平面挖空,来减小焊盘的分布电容。并通过软件仿真,保证阻抗为50欧姆。

29

过孔是引起RF 通道上阻抗不连续性的重要因素之一,如果信号频率大于1GHz,就要考虑过孔的影响。具体情况需用HFSS和Optimetrics进行优化仿真。

射频模块

频率源模块

1

数据、时钟、使能线不能在数字频率合成器芯片、晶体、晶振、变压器光耦电源模块等器件底部表面层走线。

2

频综的电源线要和其他干扰信号进行隔离,以免影响频综的相位噪声和杂散。

3

环路滤波器的布局要同层布局,并且结构紧凑,靠近相关的滤波管脚,在滤波器的下表面不能走线。

4

VCO的电源和控制电压,要和其它干扰信号进行隔离。

5

VCO和频综下面不能走线。

6

频综的数据、时钟、使能信号之间的距离要满足至少3W的间距。如果分层布线,不能平行重叠走线。

参考源模块

1

参考源的参考输入信号,是从中频送过来的,走线一定要短,不能对其它电路有影响。

2

数据、时钟、使能信号之间的距离要满足至少3W的间距。如果分层布线,不能平行重叠走线。

4

VCO的电源和控制电压,要和其它干扰信号进行隔离。

5

参考源的输出电路要和其它信号进行隔离。

LNA模块

1

LNA的输入信号线要越短越好。减小线损,增强接收通道的灵敏度。

2

LNA的匹配电路要靠近相应的管脚放置。

3

射频前端的ESD防护电路,一定要放在射频信号的主干线上,以防降低防护等级。

小信号放大器模块

1

小信号放大器的电源布线需要地铜皮及接地过孔隔离,避免其它EMI干扰窜入,进而恶化本级信号质量。

2

单片放大器偏置电感的焊盘也最好放在RF信号线上,如果空间紧张也可通过12mil高阻线与RF信号线相连 。

3

当同一电源给两级放大器同时供电时,电源要从后级向前级供电,以免末级放大电路影响前级。

4

小信号放大器的电源地回路要小,电容接地要短而直,减小公共地阻抗所产生的干扰。

滤波器模块

1

滤波器的匹配元件要靠近相应的管脚。

2

当滤波器的输入输出管脚为大焊盘时,为了保证阻抗的连续性,需要将其下面的层挖空。需通过仿真软件计算具体的阻抗值。

3

当滤波器底部是金属外壳与接地脚相连,器件的元件面投影区是禁布区,不能布微带线和过孔,

集成混频器

1

要注意混频器的外围器件应该按照DATASHEET的要求布局。

2

对于集成双平衡混频器,扼流电感和隔离电感一定要远离,并且垂直放置。

3

对于集成双平衡混频器,隔离电感的接地必须充分,尽量在附近多打地孔。

4

对于集成双平衡混频器,两个扼流电感要保持对称平行放置

集成调制器

1

I/Q是两对差分线对,这两对差分线对间的间距满足3W规则,并且中间要加地孔隔离。

2

I/Q分别是两对差分线对,这两对差分线要并行走线,不能交叉走线。

3

两对差分线线长相差不能超过100mil。

4

差分线走线过孔不能超过4个。

电源电路

射频电源

1

电源线是EMI 出入电路的重要途径。通过电源线,外界的干扰可以传入内部电路,影响RF电路指标。为了减少电磁辐射和耦合,要求DC-DC模块的一次侧、二次侧、负载侧环路面积最小。电源电路不管形式有多复杂,其大电流环路都要尽可能小。

2

单板上长距离的电源线不能同时接近或穿过级联放大器(增益大于45dB)的输出和输入端附近。避免电源线成为RF 信号传输途径,可能引起自激或降低扇区隔离度。长距离电源线的两端都需要加上高频滤波电容,甚至中间也加高频滤波电容。

3

RF PCB的电源入口处组合并联三个滤波电容,利用这三种电容的各自优点分别滤除电源线上的低、中、高频。例如:10uf,0.1uf,100pf。并且按照从大到小的顺序依次靠近电源的输入管脚。

4

用同一组电源给小信号级联放大器馈电,应当先从末级开始,依次向前级供电,使末级电路产生的EMI 对前级的影响较小。且每一级的电源滤波至少有两个电容:0.1uf,100pf。 当信号频率高于1GHz时,要增加10pf滤波电容。

5

不同电源层在空间上要避免重叠。主要是为了减少不同电源之间的干扰,特别是一些电压相差很大的电源之间,电源平面的重叠问题一定要设法避免,难以避免时可考虑中间隔地层。

6

电源部分导线印制线在层间转接的过孔数符合通过电流的要求(1A/Ф0.3mm孔)。

7

PCB的POWER部分的铜箔尺寸符合其流过的最大电流,并考虑余量(一般参考为1A/mm线宽)。

8

电源线的输入输出不能交叉。

其它

安规

1

电源印制导线在层间转接的过孔数符合通过电流的要求(1A/Ф0.3孔)

2

PCB的POWER部分的铜箔尺寸符合其流过的最大电流,并考虑余量(一般参考为2A/mm线宽)

3

单板上高温元器件的防护和热处理措施合理(类似加热器件的高温元器件处理)

4

5

较大体积零件的固定孔及安装后的电气间隙和在印制板上的爬电距离符合安规要求。(如DC/DC外壳、屏蔽盒)

6

屏蔽盒固定后,与其它接插件等带能量危险或与危险电压电极的电气间隙达到安规要求;固定螺钉及垫片在印制板上爬电距离符合要求。

7

-48V输入印制线位于重叠位置,层间距离没有小于0.1mm。

8

PCB电源部分的连接器有防止反插措施

9

DC/DC的输入/输出印制线,不与DC/DC模块在同一面(贴装DC/DC除外,无台阶的DC/DC外壳会与印制线的电气间隙不够,甚至会依靠阻焊剂绝缘)

10

功放输出口有保护电路(如环行器等)保证不会过功率引发过热或燃烧事件

11

防雷击连接器与气体放电管及保护二极管之间的布线要尽量粗,并且其布线到地的距离要大于80mil以上。

一、布局注意事项

(1) 结构设计要求 在 PCB 布局之前需要弄清楚产品的结构。

结构需要在 PCB 板上体现出来。比如腔壳的外边厚度大小,中间隔腔的厚度大小, 倒角半径大小和隔腔上的螺钉大小等等(换句话说,结构设计是根据 完成后的 PCB 上所画的轮廓(结构部分)进行具体设计的)。一般情 况,外边腔厚度为 4mm;内腔宽度为 3mm;点胶工艺的为 2mm;倒角 半径 2.5mm。以 PCB 板的左下角为原点,隔腔需在栅格 0.5 的整数倍, 最少需要做到栅格为 0.1 的整数倍。这样有利于结构加工商进行加工, 误差控制比较精确些。当然,这需要根据客户的要求来设计。

下图所示为 PCB 设计完成后的结构轮廓图:

(2) 布局要求 布局优先对射频链路进行布局,然后对其它电路进行布局。 A 射频链路布局注意事项 完全根据原理图的先后顺序(输入到输出,包括每个元件的先后 位置和元件与元件之间的间距都有讲究的。有的元件与元件之间距离 不宜过大,比如π 网。)进行布局,布局成“一”字形或者“L”形。 在实际的射频链路布局中,因受产品的空间限制,不可能完全实 现,这就迫使我们将布局成“U”形。布局成 U 形并不是不可以,但 需要在中间加隔腔将其左右进行隔离,做好屏蔽。

射频电路设计的注意事项、屏蔽方法以及走线与地还有一种在横向也需要添加隔腔。即,用隔腔把一字形左右进行 隔离。这主要是因为需要隔离部分非常敏感或易干扰其它电路;另外, 还有一种可能就是一字形输入端到输出端这段电路的增益过大,也需 要用隔腔将其分开(若增益过大,腔体太大,可能会引起自激。)。

射频电路设计的注意事项、屏蔽方法以及走线与地B 芯片外围电路布局 射频器件外围电路布局严格参照 datasheet 上面的要求进行布 局,受空间限制可以进行调整;数字芯片外围电路布局就不多讲了。

 二、 布线注意事项 

根据 50 欧姆阻抗线宽进行布线,尽量从焊盘中心出线,线成直 线,尽量走在表层。在需要拐弯的地方做成 45 度角或圆弧走线,推 荐在电容或电阻两边进行拐弯。如果遇到器件走线匹配要求的,请严 格按照 datasheet 上面的参考值长度走线。比如,一个放大管与电容 之间的走线长度(或电感之间的走线长度)要求等等。

在进行 PCB 设计时,为了使高频电路板的设计更合理,抗干扰性能更 好,应从以下几方面考虑(通用做法):

(1) 合理选择层数 在 PCB 设计中对高频电路板布线时,利用中间内层平面作为电源和 地线层,可以起到屏蔽的作用,有效降低寄生电感、缩短信号线长度、 降低信号间的交叉干扰。 

(2) 走线方式 走线必须按照 45°角拐弯或圆弧拐弯,这样可以减小高频信 号的发射和相互之间的耦合。 

(3) 走线长度 走线长度越短越好,两根线并行距离越短越好。 

(4) 过孔数量 过孔数量越少越好。

(5) 层间布线方向 层间布线方向应该取垂直方向,就是顶层为水平方向,底层为 垂直方向,这样可以减小信号间的干扰。 

(6) 敷铜 增加接地的敷铜可以减小信号间的干扰。 

(7) 包地 对重要的信号线进行包地处理,可以显著提高该信号的抗干扰 能力,当然还可以对干扰源进行包地处理,使其不能干扰其他 信号。 

(8) 信号线 信号走线不能环路,需要按照菊花链方式布线。 

三、 接地处理 

(1)射频链路接地 射频部分采用多点接地方式进行接地处理。射频链路铺铜间隙一般 30mil 到 40mil 用的比较多。两边都需要打接地孔,且间距尽量保持 一致。射频通路上对地电容电阻的接地焊盘,尽量就近打接地孔。器 件上的接地焊盘都需要打接地过孔。

射频电路设计的注意事项、屏蔽方法以及走线与地(2)腔壳接地孔 为了让腔壳与 PCB 板之间更好的接触。一般打两排接地孔且交错方 式放置,如图 06 所示。PCB 隔腔上需要开窗,如图 07 所示。PCB 底 层接地铜皮与底板接触的地方都需要开窗处理,使其更好的接触。如 图 08 所示(PCB 板的上半部分与底座接触):

射频电路设计的注意事项、屏蔽方法以及走线与地

PCB 隔腔接地过孔图

PCB 隔腔开窗图

射频电路设计的注意事项、屏蔽方法以及走线与地

PCB 底层开窗图

(3)螺钉放置(需要了解结构知识) 为了使 PCB 与底座和腔壳之间有更紧密的接触(更好的屏蔽) 需要在 PCB 板上放置螺钉孔位置。 PCB 与腔壳之间螺钉放置方法:隔腔每个交叉的地方放置一个螺 钉。在实际设计中,比较难实现,可以根据模块电路功能进行适当调 整。但不管怎样,腔壳四个角上必须都有螺钉。

射频电路设计的注意事项、屏蔽方法以及走线与地腔壳螺钉图 

 PCB 与底座之间的螺钉放置方法:腔壳中的每个小腔内都需要有 螺钉,视腔大小而定螺钉数量(腔越大,放置的螺钉就多)。一般原 则是在腔的对角上放置螺钉。SMA 头或其他连接器旁边必须放置螺钉。 在 SMA 头或连接器在插拔过程中不致 PCB 板变形。

射频电路设计的注意事项、屏蔽方法以及走线与地腔内螺钉图


原文标题:射频电路设计要点

文章出处:【微信号:WW_CGQJS,微信公众号:传感器技术】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
分享:

评论

相关推荐

如何为PCBA加工选择适合的锡膏,需要注意哪几方面

外行人可能都以为在PCBA加工过程中,锡膏都是一样的,但实际上内行人都知道,这些锡膏是不同的,他们因....
的头像 牵手一起梦 发表于 07-02 10:24 55次 阅读
如何为PCBA加工选择适合的锡膏,需要注意哪几方面

SRC6000系列电路板生产制造故障分析系统的使用手册

ICT(In-Circuit Test)又称在线测试仪,如同一块功能强大的万用表,主要是靠测试探针接....
发表于 07-02 08:00 8次 阅读
SRC6000系列电路板生产制造故障分析系统的使用手册

跑马灯控制和双面PCB设计的资料详细说明

本文档的主要内容详细介绍的是跑马灯控制和双面PCB设计的资料详细说明。
发表于 07-02 08:00 10次 阅读
跑马灯控制和双面PCB设计的资料详细说明

PCB板阻抗线布线及阻抗参数分享

日常生活中,我们每天都会接触到手机、电脑、高清电视,它们的核心是线路板,为能实现高速数据传输,线路板的生产离不开阻抗匹配...
发表于 07-01 15:54 58次 阅读
PCB板阻抗线布线及阻抗参数分享

高可靠PCB板,那些不为人知的生产难点

多层PCB在通讯、医疗、工控、安防、汽车、电力、航空、军工、计算机周边等领域中做为“核心主力”,产品功能越来越高,PC...
发表于 07-01 15:43 41次 阅读
高可靠PCB板,那些不为人知的生产难点

如何做好PCB中EMC设计方案

  有关PCB中EMC设计方案的难题,应该是众多电子器件硬件工程师的一大烦扰之处。例如:PCB层叠时要怎样考虑到EMC?...
发表于 07-01 14:45 49次 阅读
如何做好PCB中EMC设计方案

PCB设计的几类端接方法的差别

  大家都知道,电路中假如阻抗不接连,马上会导致数据信号的反射,造成上冲下去冲、振铃等数据信号失帧,比较严重危害数据信号...
发表于 07-01 14:29 33次 阅读
PCB设计的几类端接方法的差别

ADI在线研讨会:PCB布局布线指南

PCB布局布线是产品设计中的重要一步,PCB布局布线的好坏将直接影响电路的性能。 本次PCB(印制电....
的头像 ADI视频 发表于 07-01 12:59 74次 观看
ADI在线研讨会:PCB布局布线指南

使用可扩展的PMIC避免重新设计汽车摄像头模块电源电路

可编程PMIC有两种类型:软件可编程PMICs和硬件可编程PMICs。软件可编程PMICs支持完全可....
的头像 德州仪器 发表于 07-01 10:18 108次 阅读
使用可扩展的PMIC避免重新设计汽车摄像头模块电源电路

看看奥迪A8的毫米波雷达PCB设计

Aptiv的短程雷达传感器包含两个发射器和四个接收器通道,在76-77GHz频带内工作,这是汽车雷达....
的头像 贸泽电子设计圈 发表于 07-01 09:36 243次 阅读
看看奥迪A8的毫米波雷达PCB设计

PCB布局中的开关电源电路

  开关电源电路是一个电子设备的关键构成部分,开关电源电路设计方案的优劣,立即拖累商品特性的优劣。大家电子设备的开关电源...
发表于 07-01 09:05 49次 阅读
PCB布局中的开关电源电路

收音机的设计与调试的实践资料说明

通过对收音机的设计、仿真掌握电路设计基本技能、常用电子元件参数、收音机工作原理、通信系统调试技术。
发表于 07-01 08:00 20次 阅读
收音机的设计与调试的实践资料说明

Altium Designer的官方入门手册教程免费下载

Altium(前身为 Protel 国际有限公司)由 Nick Martin 于 1985 年始创于....
发表于 07-01 08:00 34次 阅读
Altium Designer的官方入门手册教程免费下载

ADC0809的应用程序和仿真与PCB板资料合集免费下载

本文档的主要内容详细介绍的是ADC0809的应用程序和仿真与PCB板资料合集免费下载。
发表于 06-30 17:34 23次 阅读
ADC0809的应用程序和仿真与PCB板资料合集免费下载

12总线一共有几根线,PCB布线时需要注意什么?

12总线一共有几根线,PCB布线时需要注意什么? ...
发表于 06-30 17:29 210次 阅读
12总线一共有几根线,PCB布线时需要注意什么?

PCB布局中的电源电路设计

  开关电源电路是一个电子设备的关键构成部分,开关电源电路设计方案的优劣,立即拖累商品特性的优劣。大家电子设备的开关电源...
发表于 06-30 17:23 173次 阅读
PCB布局中的电源电路设计

PCB设计中线宽与电流的关系

不同厚度不同宽度的铜箔的载流量见下表: 注1 用铜皮作导线通过大电流时铜箔宽度的载流量应参考表中的数值降额50%去选择考。...
发表于 06-30 14:50 94次 阅读
PCB设计中线宽与电流的关系

PCB设计铺铜需留意的那些问题

所谓覆铜就是将PCB上闲置的空间作为基准面,然后用固体铜填充,这些铜区又称为灌铜。敷铜的意义在于,减小地线阻抗,提高抗...
发表于 06-30 14:14 278次 阅读
PCB设计铺铜需留意的那些问题

pcb板焊接不良的原因有哪些

我们经常在拿到pcb板后进行手工焊接,因此会出现焊接不良,不佳等现象,那么造成此种缺陷的因素究竟有哪....
发表于 06-29 18:25 128次 阅读
pcb板焊接不良的原因有哪些

PCB的通孔设计规则有哪些

通孔传统上被分为两组:电镀的(支持的)孔和非电镀的(不支持的)孔。“支持的”指孔壁上的电镀。非电镀的....
发表于 06-29 18:21 116次 阅读
PCB的通孔设计规则有哪些

PCB布线设置规范说明

PCB布线设置规范说明
发表于 06-29 18:19 126次 阅读
PCB布线设置规范说明

铝基板和PCB板有什么区别

很多刚涉及PCB行业的小伙伴经常会碰到铝基板这个名词,那么铝基板和PCB板究竟有什么区别,今天就和大....
发表于 06-29 18:09 117次 阅读
铝基板和PCB板有什么区别

PCB制板过程中的常规需求有哪些

今天小编就简单的为大家介绍一下PCB制板过程中的常规需求
发表于 06-29 18:08 62次 阅读
PCB制板过程中的常规需求有哪些

关于pcb线路板的颜色疑问解答

很多朋友问小编,为什么我们用的线路板绝大多数都是绿色的?其实呢,pcb线路板生产的不一定是绿色的,要....
发表于 06-29 18:00 65次 阅读
关于pcb线路板的颜色疑问解答

常用的PCB设计规则

在PCB 设计中,有一些常用的设计规则,以下将做一个简单的介
发表于 06-29 17:56 55次 阅读
常用的PCB设计规则

PCB打样的基本知识讲解

在人们的生活中大部分人可能都没有听过线路板或者PCB打样,甚至认为这些和自己没有关系,接触不到,但其....
发表于 06-29 17:52 79次 阅读
PCB打样的基本知识讲解

高层板的设计方法

高层印制板就是多层走线层与绝缘材料pp层交替地经过压合机压合粘合一起而形成的PCB线路板,并根据设计....
发表于 06-29 17:45 70次 阅读
高层板的设计方法

PCB线路板的维修知识总结

随着PCB线路板在各大电子产品中的运用,PCB线路板的维修也成为一门热门的行业。今天小捷哥就针对目前....
发表于 06-29 17:41 58次 阅读
PCB线路板的维修知识总结

PCB板为什么要做表面沉金

我们知道PCB板的表面工艺处理有很多种,比如:沉金、沉银、无铅喷锡、有铅喷锡、OSP等,这么多种类的....
发表于 06-29 17:39 63次 阅读
PCB板为什么要做表面沉金

PCB电路板短路的检查方法

PCB设计者在打开文件后,可以将部分网络放大并点亮,检查线路之间的距离,把连接最接近的地方特别注意一....
发表于 06-29 17:33 37次 阅读
PCB电路板短路的检查方法

PCB的层数越多越好吗

PCB说白了就是有许多线材组成的一块平板。这块平板上的线材负责设备与设备(芯片与芯片)之间的通信与供....
发表于 06-29 17:29 32次 阅读
PCB的层数越多越好吗

PCB布线的基本原则与操作

随着高速理论的飞速发展,pcb走线已经不能看作简单的互连载体了,而是要从传输线理论来分析各种分布参数....
发表于 06-29 17:26 89次 阅读
PCB布线的基本原则与操作

怎么分辨pcb层数

在单面,双面,多层PCB用同等板材且体积一样的情况下,多层PCB的重量》双面PCB的重量》单面PCB....
发表于 06-29 17:24 31次 阅读
怎么分辨pcb层数

PCB表面贴装焊接的五大不良原因及解决方案

润湿不良是指焊接过程中焊料和基板焊区,经滋润后不生成金属间的反响,而形成漏焊或少焊毛病。其缘由大多是....
发表于 06-29 17:14 19次 阅读
PCB表面贴装焊接的五大不良原因及解决方案

多层PCB阻抗线布线五大经验

 日常生活中,我们每天都会接触到手机、电脑、高清电视,它们的核心是线路板,为能实现高速数据传输,线路....
发表于 06-29 17:00 25次 阅读
多层PCB阻抗线布线五大经验

PCB电镀线注意事项有哪些

图形镀上板戴细纱手套,下板戴棕胶手套,全板上板戴橡胶手套,下板戴干燥的粗纱手套。
发表于 06-29 15:40 46次 阅读
PCB电镀线注意事项有哪些

PCB电镀工艺参数和保养要求

温度对镀液性能影响很大,温度过高,加速添加剂分解会增加添加剂消耗,镀层结晶粗糙,光亮度降低,温度太低....
发表于 06-29 15:37 47次 阅读
PCB电镀工艺参数和保养要求

PCB钻孔的质量缺陷及影响因素

钻孔质量缺陷分为钻孔缺陷和孔内缺陷;钻孔缺陷为漏孔堵孔、多孔、孔径错、偏孔及断钻头、未穿透等;孔内缺....
发表于 06-29 15:22 48次 阅读
PCB钻孔的质量缺陷及影响因素

Nexperia推出分立半导体产品组合,SWF封装提高电路板的抗弯曲能力

6月23日,半导体基础元器件生产领域的高产能生产专家Nexperia今日宣布推出面向汽车应用领域符合....
的头像 牵手一起梦 发表于 06-29 15:09 177次 阅读
Nexperia推出分立半导体产品组合,SWF封装提高电路板的抗弯曲能力

PCB邮票孔的种类_PCB邮票孔的制造过程

通过对于PCB电路板边缘的孔或通孔做电镀石墨化。切割板边以形成一系列半孔。这些半孔就是我们所说的邮票....
发表于 06-29 10:01 60次 阅读
PCB邮票孔的种类_PCB邮票孔的制造过程

PCB的定位点设置

设置基准定位点时,通常在定位点的周围留出比其大1.5mm的无阻焊区,不能有相似的焊盘或者别的类似的。
发表于 06-29 09:53 49次 阅读
PCB的定位点设置

如何降低AC和DC引起的PCB噪声的方法

对于电子工程师来说,电磁干扰(EMI)是再熟悉不过事,比如在同一板上使用交流和直流组件可能会导致EM....
发表于 06-29 09:31 44次 阅读
如何降低AC和DC引起的PCB噪声的方法

PCB板过热的原因和减少发热的方法

对于PCB板过热的原因有很多,单片机开发工程师解释说,一般情况下,如果设计缺陷、没有选择合适的零件和....
发表于 06-29 09:15 81次 阅读
PCB板过热的原因和减少发热的方法

PCB散热的方法

在水平方向上,大功率器件尽量靠近印制板边沿布置,以便缩短传热路径;在垂直方向上,大功率器件尽量靠近印制板上方布置,以便减少...
发表于 06-29 08:51 111次 阅读
PCB散热的方法

RM9003A单通道恒流LED控制芯片的数据手册免费下载

RM9003A是单通道LED恒流驱动控制芯片, 可直接驱动高压LED灯串,输出电流由外接电阻设置为5....
发表于 06-29 08:00 33次 阅读
RM9003A单通道恒流LED控制芯片的数据手册免费下载

电子安装技术基础的资料讲解

电子安装技术基础,主要是认识电路原理图,印制板图,掌握印制板图的设计原则和制作方法,熟练使用常用焊接....
发表于 06-28 17:44 50次 阅读
电子安装技术基础的资料讲解

全球PCB 50强企业(TOP 50)

通讯PCB又可以细分成不同的类型,包括光模块、基站天线、滤波器、振子板等。据悉,2018年全球通讯P....
的头像 微波射频网 发表于 06-28 17:29 512次 阅读
全球PCB 50强企业(TOP 50)

画多层板的方法总结

固定元件的放置类似于固定孔的放置,也是讲究一个精准的位置放置。这个主要是根据设计结构来进行放置的。对....
的头像 电源联盟 发表于 06-28 15:35 328次 阅读
画多层板的方法总结

电子线路CAD课程设计报告的详细资料说明

 一、电子线路 CAD是从实用角度出发,详细介绍了 Altium Designer 的实用功能,可以....
发表于 06-28 08:00 60次 阅读
电子线路CAD课程设计报告的详细资料说明

贴片自恢复保险丝测试指南的详细资料说明

1. 初始内阻Rimin 测量:拆包装,拿出保险丝,测量保险丝的内阻;2. 焊接:将保险丝通过回流焊....
发表于 06-24 18:21 63次 阅读
贴片自恢复保险丝测试指南的详细资料说明

如何手工制作电焊焊接pcb电路板

现在我和大伙儿介绍下手工制作电焊焊接pcb线路板PCB电路板的几个流程,操作步骤如下所示:
发表于 06-24 18:10 134次 阅读
如何手工制作电焊焊接pcb电路板

哪些行业需要用到印刷电路板PCB

印刷电路板是所有电子设备和产品中最重要的组件。大多数情况下,每天都在使用这些板,甚至没有意识到它们是....
发表于 06-24 18:07 88次 阅读
哪些行业需要用到印刷电路板PCB

pcb线路板线路板的胶片和全片有什么区别

 pcb线路板线路板的胶片:通常是人们讲的tentover加工工艺,其应用的药水为酸碱性蚀刻工艺胶片....
发表于 06-24 18:03 80次 阅读
pcb线路板线路板的胶片和全片有什么区别

快速PCB设计中推荐应用多层PCB电路板的优势

在快速PCB设计中强烈推荐应用多层PCB电路板。首先,多层PCB电路板分派里层专门针对给开关电源和地....
发表于 06-24 18:00 73次 阅读
快速PCB设计中推荐应用多层PCB电路板的优势

PCB打样生产制造的重要环节

想必清楚PCB打样生产过程的人都清楚,电镀工艺是线路板中尤为重要的,也是最为关键的一个重要环节,由于....
发表于 06-24 17:58 72次 阅读
PCB打样生产制造的重要环节

关于手动布线以及关键信号的处理

另外,要注意稳压电源在布局时,尽可能安排在单独的印制板上。当电源与电路合用印制板时,在布局中,应该避....
的头像 EDA365 发表于 06-24 15:41 426次 阅读
关于手动布线以及关键信号的处理

铜表面粗糙度的变化会引起PCB材料的色散变化吗?

由于毫米波电路的波长短,通常使用薄的层压板。但是,即使使用非常薄的介电材料,带状线及其多层电路在给定....
的头像 微波射频网 发表于 06-24 11:13 288次 阅读
铜表面粗糙度的变化会引起PCB材料的色散变化吗?

PCB设计的后期处理工作

即设计规则检查,通过Checklist和Report等检查手段,重点规避开路、短路类的重大设计缺陷,....
发表于 06-24 10:14 84次 阅读
PCB设计的后期处理工作

硬板是一种以什么为原料制成的板材?

3、多层板:多层板的制作方法一般由内层图形先做,然后以印刷蚀刻法做成单面或双面基板,并纳入指定的层间....
的头像 电子工程技术 发表于 06-24 10:11 252次 阅读
硬板是一种以什么为原料制成的板材?

波峰焊接工艺中优化建议有哪些

随着电子产品的体积正变得越来越小,PCBA整个组装的精密度越来越高,导致整个电子元器件的体积已经不能....
的头像 牵手一起梦 发表于 06-24 09:31 260次 阅读
波峰焊接工艺中优化建议有哪些

X-NUCLEO-NFC06A1 X-NUCLEO-NFC06A1NFC读卡器扩展板基于ST25R3916的STM32和STM8核苷

NFC读卡器IC:ST25R3916 47毫米x 34英寸毫米,四匝,13.56MHz的电感在PCB和相关联的调谐电路 6个通用的LED ISO 18092的无源和有源引发剂,ISO 18092的被动和主动目标 NFC-A和NFC-F卡模拟 ISO 14443A和ISO14443B ISO 15693 的FeliCa™ 最多1.7 W的输出功率与差天线 在X-细胞核 - NFC06A1 NFC读卡器扩展板是基于ST25R3916设备上。
发表于 05-21 01:05 18次 阅读
X-NUCLEO-NFC06A1 X-NUCLEO-NFC06A1NFC读卡器扩展板基于ST25R3916的STM32和STM8核苷

X-NUCLEO-NFC05A1 X-NUCLEO-NFC05A1NFC读卡器扩展板基于ST25R3911B的STM32和STM8核苷

NFC读卡器IC:ST25R3911B 47毫米x 34英寸毫米,四匝,13.56MHz的电感在PCB和相关联的调谐电路 6个通用的LED ISO 18092(NFCIP-1)活性的P2P ISO 14443A和ISO14443B ISO 15693 的FeliCa ™ VHBR 6.8 Mbit / s的AFE和PCD到PICC成帧 3.4 Mbit / s的PICC向PCD成帧 最多1.4 W的输出功率与差天线 的X细胞核 - NFC05A1是基于所述ST25R3911B的NFC读卡器扩展板。
发表于 05-20 19:05 24次 阅读
X-NUCLEO-NFC05A1 X-NUCLEO-NFC05A1NFC读卡器扩展板基于ST25R3911B的STM32和STM8核苷

NCP140 LDO稳压器 150 mA 超低压差 低噪声

是一款150 mA超低压差稳压器,可为功耗敏感的应用提供出色的电压精度和干净的输出电压。 NCP140非常适合电池供电的应用,因为它具有非常低的静态电流,在禁用模式下几乎为零电流。该器件具有或不具有输出电容器,并且可以最小化占位面积和BOM。 XDFN4软件包经过优化,适用于空间受限的应用程序。 特性 优势 无盖设计 节省PCB面积和成本 使用任何类型的电容器稳定 简单设计 工作输入电压范围:1.6 V至5.5 V 非常适合电池供电的应用 热关断和限流保护 坚固的设计和高可靠性 +/- 1%典型的Vout准确度 功率敏感设备的精确Vout 提供两个XDFN4软件包 ...
发表于 08-16 15:52 57次 阅读
NCP140 LDO稳压器 150 mA 超低压差 低噪声

NB7VPQ16M 预加重铜缆/电缆驱动器 12.5 Gbps 可编程 1.8 V / 2.5 V 带可选均衡器接收器

16M是一款高性能单通道可编程预加重CML驱动器,带有均衡器接收器,信号增强器,采用1.8 V或2.5 V电源,工作速率高达12.5 Gbps。当与数据/时钟路径串联时,NB7VPQ16M输入将补偿通过FR4 PCB背板或电缆互连传输的降级信号。因此,通过减少铜互连或长电缆损耗引起的符号间干扰ISI来提高串行数据速率。预加重缓冲器通过串行总线通过SDIN,串行数据输入和SCLKI​​N,串行时钟输入,控制输入进行控制,并包含提供16个可编程预加重设置的电路,以选择最佳输出补偿电平。这些可选输出电平将处理各种背板长度和电缆线。前四个SDIN位D3:D0将数字选择0dB至12dB的去加重。对于级联应用,移位的SDIN和SCLKI​​N信号显示在SDOUT和SCLKOUT引脚上。串行数据位的第5位LSB允许启用接收器的均衡功能。差分数据/时钟输入通过VT引脚包含一对内部50欧姆端接电阻,采用100欧姆中心抽头配置,可接受LVPECL,CML或LVDS逻辑电平。此功能在接收器端提供片上传输线端接,消除了外部元件。 特性 最大输入数据速率> 12.5 Gbps 最大输入时钟频率> 8 GHz 驱动高达18英寸的FR4 ...
发表于 07-31 20:02 75次 阅读
NB7VPQ16M 预加重铜缆/电缆驱动器 12.5 Gbps 可编程 1.8 V / 2.5 V 带可选均衡器接收器

SCP51460 LDO稳压器 20 mA 超低噪声

60是一款低成本,低功耗,高精度LDO稳压器。该器件在3.3 V固定输出电压下提供高达20 mA的输出电流,具有出色的稳压特性,是精密稳压器应用的理想选择。它设计为在没有输出电容的情况下稳定。当快速上升时间和PCB空间受到关注时,这是一个重要特性。保护功能包括短路电流和反向电压保护。 SCP51460采用3引脚表面贴装SOT-23封装。电路图、引脚图和封装图
发表于 07-31 12:02 146次 阅读
SCP51460 LDO稳压器 20 mA 超低噪声

LC898128DP1 OIS和开放式AF控制LSI

28DP1XGTBG是一个系统LSI,集成了片上32位DSP,FLASH ROM和外围设备,包括用于OIS(光学图像稳定)/开放式AF(自动聚焦)控制的模拟电路,恒流驱动器 特性 优势 片上DSP 数字伺服滤波器,陀螺滤波器,4轴OIS软件 小尺寸/超薄芯片 易于放置在小型PCB上 应用 终端产品 OIS相机模块 智能手机 平板电脑 电路图、引脚图和封装图
发表于 07-31 03:02 204次 阅读
LC898128DP1 OIS和开放式AF控制LSI

NCP51530 高频700 V- 2 A高端和低端驱动器

30是一款700 V高侧和低侧驱动器,具有高驱动能力,适用于AC-DC电源和逆变器。 NCP51530在高工作频率下提供同类最佳的传播延迟,低静态电流和低开关电流。因此,该器件可为高频工作的电源提供高效设计。 NCP51530采用SOIC8和DFN10封装。 特性 优势 高压范围:高达700 V AC / DC设计的设计余量 传播延迟非常快(B版本为25 ns) ) 适合高频操作 匹配传播延迟(最大7 ns) 提高效率&安培;允许并联 高达50 V / ns的高dv / dt抗扰度和负瞬态抗扰度 非常稳健的设计 DFN10封装,具有优化的引脚输出 小PCB占位面积,改善的爬电距离和寄生 快速上升和下降时间(最长15 ns) 适合重载 应用 终端产品 半满和满-bridge Converters 有源钳位反激式适配器 电机控制电源 服务器,电信和工业用电源 电动助力转向 太阳能逆变器 电路图、引脚图和封装图...
发表于 07-31 01:02 298次 阅读
NCP51530 高频700 V- 2 A高端和低端驱动器

NCV8186 LDO稳压器 1 A 超低压差 高PSRR

6是一款极低压降稳压器,可提供高达1 A的负载电流,并在-40至85°C范围内保持1.0%的出色输出电压精度。工作输入电压范围为1.8 V至5.5 V,使该器件适用于锂离子电池供电的产品以及后调节应用。该产品提供多种固定输出电压选项,其他产品可根据要求提供,范围为1.2 V至3.9 V.NCP186具有完全的过热保护和输出短路保护。启用功能。小型8针DFN8 2 mm x 2 mm封装使该器件特别适用于空间受限的应用。 特性 优势 1.8 V至5.5 V工作输入电压范围 适用于锂离子电池或后期调节应用 根据要求提供多种固定输出电压选项和其他选项,范围为1.2 V至3.9 V 设计灵活性 Typ的低静态电流。 90μA 延长电池寿命 极低压差:100 mV典型值。在Iout = 1 A(3.0V版本) 扩展电池范围 1 kHz PSRR时高75 dB 适用于噪声敏感电路 内部软启动 限制浪涌电流 在-40至85℃温度范围内的±1.0%精度 高输出电压精度 热关断和限流保护 保护产品和系统免受损坏 使用小型1μF陶瓷电容器稳定 节省PCB空间和系统成本 应用 终端产品 电池供电设备 便携...
发表于 07-30 17:02 71次 阅读
NCV8186 LDO稳压器 1 A 超低压差 高PSRR

NCV59800 LDO稳压器 1 A 低压差 低Iq

00是1 A低压差线性稳压器(LDO)系列,提供高电源纹波抑制(PSRR)和超低输出噪声。该系列LDO采用先进的BiCMOS工艺实现了非常好的电气性能。它是电信设备中使用的噪声敏感模拟RF前端的理想选择。 NCV59800采用3 mm x 3 mmDFN8封装。 特性 优势 2.2 V至5.5 V工作输入电压范围 适用于锂离子电池或后期调节应用 低典型静态电流。 60μA 延长电池寿命 极低压差:200 mV典型值。在Iout = 1 A(Vout = 2.5 V) 扩展电池范围 极低噪音,15μVrms/ V通常 适用于噪音敏感的应用程序 可调软启动 限制浪涌电流 线路精度±2.5%。负载和温度范围 高输出电压精度 热关断和电流限制保护 保护产品和损坏的系统 使用4.7μF陶瓷输出电容稳定 节省PCB空间和系统成本 应用 终端产品 电信基础设施 汽车信息娱乐系统 高速I / F(PLL / VCO) 电信设备 网络设备 工业控制 电路图、引脚图和封装图...
发表于 07-30 16:02 121次 阅读
NCV59800 LDO稳压器 1 A 低压差 低Iq

NCV4295C LDO稳压器 30 mA 超低压差

5C是一款单片集成低压差稳压器,输出电流能力为30 mA,采用TSOP-5封装。输出电压精确度在±4.0%以内,最大压差为250 mV,输入电压高达45 V.低静态电流通常在1 mA负载下仅消耗160μA电流。在输出欠压的情况下,电源故障输出被驱动为低电平。该器件非常适用于汽车和所有电池供电的微处理器设备。调节器具有防止电池反接,短路和热过载的条件。 特性 优势 极低压差65 mV(典型值)。 (最大250 mV),20 mA负载电流 在起动过程中以较低的输入电压运行。 电源故障输出 关于稳压器输出欠压,PCB上没有外部上拉电阻的即时信息 保护: 60 V瞬态输入电压反极性和反向偏压保护电流限制热关断 适用于恶劣的汽车环境。 3.3 V,5.0 V,±4%输出电压精度,在整个温度范围内,最高30 mA AEC-Q100 1级合格且PPAP能力 应用 终端产品 汽车通用 汽车 电路图、引脚图和封装图...
发表于 07-30 14:02 83次 阅读
NCV4295C LDO稳压器 30 mA 超低压差

NCP786L 线性稳压器 5 mA 450 V 超低Iq 高PSRR

L是一款高性能5 mA低压差(LDO)线性稳压器,提供非常宽的工作输入电压范围,最高工作电压为450 V DC,最大工作电压为700 V DC。它是高输入电压应用的理想选择,如工业和家庭自动化,智能计量,家用电器。 NCP786L提供±5%的输出电压精度,极高的电源抑制比和10μA的超低静态电流。 NCP786L非常适合恶劣的环境条件。 NCP786L提供可调电压调节器,输出电压范围为1.27 V至15 V. SOT-223封装提供可接受的热性能和较小的PCB尺寸。 特性 优势 工作输入电压:高达450 VDC 允许直接交流电源连接 PSRR:60 Hz时70 dB 有效降低输入纹波 静态电流:典型值10μA 大大降低空载功耗 SOT-223软件包 非常适合空间受限的应用程序 应用 终...
发表于 07-30 14:02 60次 阅读
NCP786L 线性稳压器 5 mA 450 V 超低Iq 高PSRR

NCP785A 线性稳压器 10 mA 450 V 超低Iq 高PSRR

A是一款高性能> 10mA线性稳压器,可提供高达450 V DC工作和700V DC最大工作输入电压范围。它是工业和家庭自动化等高输入电压应用的理想选择,智能电表,家电。 NCP785A提供±5%的输出电压精度,极高的电源抑制比和典型的超低静态电流。 15μA。 NCP785A非常适合恶劣的环境条件.NCP785A提供固定输出电压:3.3 V,5.0 V,12 V,15 V.SOT-89封装提供良好的散热性能和非常小的PCB尺寸。 特性 优势 工作输入电压:高达450 VDC 允许直接交流电源连接 PSRR:120 Hz时为80 dB 有效降低输入纹波 静态电流:15μA典型值 大大降低空载功耗 SOT89包 非常适合空间受限的应用 应用 终端产品 工业,家庭自动化,白色家电,照明 低功耗MCU应用电源 尺寸更小,无负载高效替代电容式滴管 断路器 烟雾传感器 家用电器 智能电表 电路图、引脚图和封装图...
发表于 07-30 12:02 109次 阅读
NCP785A 线性稳压器 10 mA 450 V 超低Iq 高PSRR

NCP4688 LDO稳压器 150 mA 低压差 高PSRR 低噪声

8是一款CMOS 150mA LDO线性稳压器,具有高输出电压精度,具有低噪声输出电压和高纹波抑制性能。低输出噪声电平10uVrms通常保持在任何输出电压。非常常见的SOT23-5封装和小型uDFN 1x1封装适用于工业应用,便携式通信设备和RF模块。 特性 优势 非常高的80 dB PSRR 非常好的噪音消除装置 非常小的包装1x1mm 非常浓缩的PCB的想法 应用 家用电器,工业设备 有线电视盒,卫星接收器,娱乐系统 汽车音响设备,导航系统 笔记本电脑适配器,液晶电视,无线电话和专用局域网系统 电路图、引脚图和封装图...
发表于 07-30 10:02 382次 阅读
NCP4688 LDO稳压器 150 mA 低压差 高PSRR 低噪声

NCP59800 LDO稳压器 1 A 低压差 低Iq 低噪声 带使能

00是1 A低压差线性稳压器(LDO)系列,提供高电源纹波抑制(PSRR)和超低输出噪声。该系列LDO采用先进的BiCMOS工艺实现了非常好的电气性能。它是电信设备中使用的噪声敏感模拟RF前端的理想选择。 NCP59800采用3 mm x 3 mmDFN8封装。 特性 优势 2.2 V至6.0 V工作输入电压范围 适用于锂离子电池或后期调节应用 低典型静态电流。 60μA 延长电池寿命 极低压差:200 mV典型值。在Iout = 1 A(Vout = 2.5 V) 扩展电池范围 极低噪音,15μVrms/ V通常 适用于噪音敏感的应用程序 可调软启动 限制浪涌电流 线路精度±2.5%。负载和温度范围 高输出电压精度 热关断和电流限制保护 保护产品和损坏的系统 使用4.7μF陶瓷输出电容稳定 节省PCB空间和系统成本 应用 终端产品 电信基础设施 音频 高速I / F(PLL / VCO) 电信设备 工业控制 网络设备 电路图、引脚图和封装图...
发表于 07-30 09:02 176次 阅读
NCP59800 LDO稳压器 1 A 低压差 低Iq 低噪声 带使能

NCP177 LDO稳压器 500 mA 低压降 高PSRR 低Iq

是一款超低压降稳压器,可提供高达0.5 A的负载电流,并在25°C时保持0.8%的出色输出电压精度。 1.6 V至5.5 V的工作输入电压范围使该器件适用于锂离子电池供电产品以及后调节应用。该产品提供多种固定输出电压选项,其他产品可根据要求提供,范围为0.7 V至3.6 V.NCP177可完全防止过热和输出短路。启用功能。小型4引脚XDFN4 1.0 mm x 1.0 mm封装使该器件特别适用于空间受限的应用。 特性 优势 1.6 V至5.5 V工作输入电压范围 适用于锂离子电池或后期调节应用 根据要求提供多种固定输出电压选项和其他选项,范围为0.7 V至3.6 V 设计灵活性 Typ的低静态电流。 60μA 延长电池寿命 极低压差:200 mV典型值。在Iout = 0.5 A(1.8V版本) 扩展电池范围 1 kHz PSRR时高75 dB 适用于噪声敏感电路 内部软启动 限制浪涌电流 室温下±0.8%精度 高输出电压精度 热关断和限流保护 保护产品和系统免受损坏 使用小型1μF陶瓷电容器稳定 节省PCB空间和系统成本 应用 终端产品 电池供电设备 便携式通信设备 相机,图像传感器...
发表于 07-30 07:02 68次 阅读
NCP177 LDO稳压器 500 mA 低压降 高PSRR 低Iq

NCP3101 同步降压稳压器 PWM 6.0 A

1是一款高效率,宽输入,高输出电流,同步脉冲宽度调制(PWM)降压稳压器,采用2.7 V至18 V电源供电。该器件能够产生低至0.8 V的输出电压.NCP3101可通过内部设置的275 kHz振荡器驱动的MOSFET开关连续输出6 A电流。 40引脚器件提供最佳集成度,以减小电源的尺寸和成本。 NCP3101还集成了外部补偿跨导误差放大器和电容可编程软启动功能。保护功能包括可编程短路保护和欠压锁定(UVLO)。 NCP3101采用40引脚QFN封装。还提供10A版NCP3102。 NCP3101将被NCP3101C替换为每PCN#16498 特性 优势 集成6A开关稳压器 提高功率密度,简化系统级集成 0.8 V +/- 1%内部参考 提高系统级精度 电阻可编程电流限制 优化应用程序的系统保护 275 kHz固定频率操作 效率高(效率> 92%) 6x6 mm QFN封装 减少PCB占位面积和电路板空间需要实施 电容可编程软启动 用于软启动时间可调性的外部电容器 18 mohm内部HS和LS FET 高效运作 2.7 V至18 V电源 宽输入电压范围 应用 终端产品 高功率密度dc-dc 嵌入式...
发表于 07-30 04:02 106次 阅读
NCP3101 同步降压稳压器 PWM 6.0 A

NCP6924 6通道电源管理IC(PMIC) 带有2个DC-DC转换器和4个LDO

4是安森美半导体迷你电源管理IC系列的一部分。它经过优化,可提供电池供电的便携式应用子系统,如相机模块,微处理器或任何外围设备。该器件集成了两个高效1000 mA降压DC-DC转换器,带有DVS(动态电压调节)和四个低压差(LDO)稳压器,采用WLCSP-30 2.46 x 2.06mm封装。 特性 优势 非常小的封装2.46 x 2.06 mm 减少PCB空间 超低静态电流(典型值105 uA) 节省电池寿命 I 2 C可访问的先前启用设备允许在启动系统之前更改设置 提供设计灵活性 两个DC-DC转换器,效率95%,可编程输出电压0.6 V至3.3 V,12.5 mV步进,1000 mA输出电流能力 四个低噪声,低压差稳压器,可编程输出电压1.0 V至3.3 V,50 mV步进,2 x 150 mA和2 x 300mA输出电流能力,50 uVrms典型低输出噪声 应用 终端产品 电池供电的应用电源管理 核心电压低的处理器的电源 相机模块 外围子系统 USB供电设备 智能手机 平板电脑 可穿戴设备 MP3播放器 电路图、引脚图和封装图...
发表于 07-30 01:02 84次 阅读
NCP6924 6通道电源管理IC(PMIC) 带有2个DC-DC转换器和4个LDO

NCV8177 LDO稳压器 500 mA 高PSRR 带使能

7是CMOS LDO稳压器,具有500 mA输出电流。输入电压低至1.6 V,输出电压可设置为0.75 V.它提供非常稳定和精确的电压,具有低噪声和高电源抑制比(PSRR),适用于RF应用。 NCV8177适用于为汽车信息娱乐系统和其他功率敏感设备的RF模块供电。由于功耗低,NCV8177具有高效率和低散热性。小型4引脚XDFN4 1.0 mm x 1.0 mm封装使该器件特别适用于空间受限的应用。 特性 优势 1.6 V至5.5 V工作输入电压范围 适用于锂离子电池或后期调节应用 根据要求提供多种固定输出电压选项和其他选项,范围为0.7 V至3.6 V 设计灵活性 Typ的低静态电流。 60μA 延长电池寿命 极低压差:200 mV典型值。在Iout = 0.5 A(1.8V版本) 扩展电池范围 1 kHz PSRR时高75 dB 适用于噪声敏感电路 内部软启动 限制浪涌电流 室温下±0.8%精度 高输出电压精度 热关断和限流保护 保护产品和系统免受损坏 使用小型1μF陶瓷电容器稳定 节省PCB空间和系统成本 应用 终端产品 灯光 仪器设备 相机,摄像机,Se nsors 相机 摄...
发表于 07-29 22:02 197次 阅读
NCV8177 LDO稳压器 500 mA 高PSRR 带使能

NCP186 LDO稳压器 1 A 超低压差 高PSRR 带使能

是一款超低压降稳压器,可提供高达1 A的负载电流,并在-40至85℃范围内保持1.0%的出色输出电压精度。工作输入电压范围为1.8 V至5.5 V,使该器件适用于锂离子电池供电的产品以及后调节应用。该产品提供多种固定输出电压选项,其他产品可根据要求提供,范围为1.2 V至3.9 V.NCP186具有完全的过热保护和输出短路保护。小型8引脚XDFN6 1.2 mm x 1.6 mm封装使该器件成为可能特别适用于空间受限的应用。 特性 优势 1.8 V至5.5 V工作输入电压范围 适用于锂离子电池或后期调节应用 多种固定输出电压选项及其他可根据要求提供1.2 V至3.9 V 设计灵活性 Typ的低静态电流。 90μA 延长电池寿命 极低压差:100 mV典型值。在Iout = 1 A(3.0V版本) 扩展电池范围 1 kHz PSRR时高75 dB 适用于噪声敏感电路 内部软启动 限制浪涌电流 在-40至85℃温度范围内的±1.0%精度 高输出电压精度 热关断和限流保护 保护产品和系统免受损坏 使用小型1μF陶瓷电容器稳定 节省PCB空间和系统成本 应用 终端产品 电池供电设备 便携式通讯设...
发表于 07-29 22:02 128次 阅读
NCP186 LDO稳压器 1 A 超低压差 高PSRR 带使能

NCP176 LDO稳压器 500 mA 超低压降 高PSRR 带使能

是一款超低压差稳压器,可提供高达0.5 A的负载电流,并在25°C时保持0.8%的出色输出电压精度。工作输入电压范围为1.4 V至5.5 V,使该器件适用于锂离子电池供电产品以及后调节应用。该产品提供3.3 V固定输出电压选项,其他电压选项可根据要求提供,范围为0.7 V至3.6 V.NCP176具有完全的过热保护和输出短路保护。小型6引脚XDFN6 1.2 mm x 1.2 mm封装使该设备特别适用于空间受限的应用程序。 特性 优势 1.4 V至5.5 V工作输入电压范围 适用于锂离子电池或后调节应用 几种固定输出电压可根据要求提供的选项和其他选项范围为0.7 V至3.6 V 设计灵活性 Typ的低静态电流。 60μA 延长电池寿命 极低压降:130 mV典型值。在Iout = 0.5 A(2.5V版本) 扩展电池范围 1 kHz PSRR时高75 dB 适用于噪声敏感电路 内部软启动 限制浪涌电流 室温下±0.8%精度 高输出电压精度 热关断和限流保护 保护产品和系统免受损坏 使用小型1μF陶瓷电容器稳定 节省PCB空间和系统成本 应用 终端产品 电池供电设备 便携式通信设备 相机,...
发表于 07-29 22:02 79次 阅读
NCP176 LDO稳压器 500 mA 超低压降 高PSRR 带使能