消灭EMC三大利器的原理详细分析

RF与EMC小助手 2017-12-01 10:12 次阅读

滤波电容器、共模电感、磁珠在EMC设计电路中是常见的身影,也是消灭电磁干扰的三大利器。对于这这三者在电路中的作用,相信还有很多工程师搞不清楚。本文从设计设计中,详细分析了消灭EMC三大利器的原理。

三大利器之滤波电容器

尽管从滤除高频噪声的角度看,电容的谐振是不希望的,但是电容的谐振并不是总是有害的。当要滤除的噪声频率确定时,可以通过调整电容的容量,使谐振点刚好落在骚扰频率上。

在实际工程中,要滤除的电磁噪声频率往往高达数百MHz,甚至超过1GHz。对这样高频的电磁噪声必须使用穿心电容才能有效地滤除。普通电容之所以不能有效地滤除高频噪声,是因为两个原因,一个原因是电容引线电感造成电容谐振,对高频信号呈现较大的阻抗,削弱了对高频信号的旁路作用;另一个原因是导线之间的寄生电容使高频信号发生耦合,降低了滤波效果。

穿心电容之所以能有效地滤除高频噪声,是因为穿心电容不仅没有引线电感造成电容谐振频率过低的问题,而且穿心电容可以直接安装在金属面板上,利用金属面板起到高频隔离的作用。但是在使用穿心电容时,要注意的问题是安装问题。穿心电容最大的弱点是怕高温和温度冲击,这在将穿心电容往金属面板上焊接时造成很大困难。许多电容在焊接过程中发生损坏。特别是当需要将大量的穿心电容安装在面板上时,只要有一个损坏,就很难修复,因为在将损坏的电容拆下时,会造成邻近其它电容的损坏。

三大利器之共模电感

由于EMC所面临解决问题大多是共模干扰,因此共模电感也是我们常用的有力元件之一,共模电感是一个以铁氧体为磁芯的共模干扰抑制器件,它由两个尺寸相同,匝数相同的线圈对称地绕制在同一个铁氧体环形磁芯上,形成一个四端器件,要对于共模信号呈现出大电感具有抑制作用,而对于差模信号呈现出很小的漏电感几乎不起作用。原理是流过共模电流时磁环中的磁通相互叠加,从而具有相当大的电感量,对共模电流起到抑制作用,而当两线圈流过差模电流时,磁环中的磁通相互抵消,几乎没有电感量,所以差模电流可以无衰减地通过。因此共模电感在平衡线路中能有效地抑制共模干扰信号,而对线路正常传输的差模信号无影响。

共模电感在制作时应满足以下要求:

1)绕制在线圈磁芯上的导线要相互绝缘,以保证在瞬时过电压作用下线圈的匝间不发生击穿短路。

2)当线圈流过瞬时大电流时,磁芯不要出现饱和。

3)线圈中的磁芯应与线圈绝缘,以防止在瞬时过电压作用下两者之间发生击穿。

4)线圈应尽可能绕制单层,这样做可减小线圈的寄生电容,增强线圈对瞬时过电压的而授能力。

通常情况下,同时注意选择所需滤波的频段,共模阻抗越大越好,因此我们在选择共模电感时需要看器件资料,主要根据阻抗频率曲线选择。另外选择时注意考虑差模阻抗对信号的影响,主要关注差模阻抗,特别注意高速端口。

三大利器之磁珠

在产品数字电路EMC设计过程中,我们常常会使用到磁珠,铁氧体材料是铁镁合金或铁镍合金,这种材料具有很高的导磁率,他可以是电感的线圈绕组之间在高频高阻的情况下产生的电容最小。铁氧体材料通常在高频情况下应用,因为在低频时他们主要程电感特性,使得线上的损耗很小。在高频情况下,他们主要呈电抗特性比并且随频率改变。实际应用中,铁氧体材料是作为射频电路的高频衰减器使用的。实际上,铁氧体较好的等效于电阻以及电感的并联,低频下电阻被电感短路,高频下电感阻抗变得相当高,以至于电流全部通过电阻。铁氧体是一个消耗装置,高频能量在上面转化为热能,这是由他的电阻特性决定的。

铁氧体磁珠与普通的电感相比具有更好的高频滤波特性。铁氧体在高频时呈现电阻性,相当于品质因数很低的电感器,所以能在相当宽的频率范围内保持较高的阻抗,从而提高高频滤波效能。 在低频段,阻抗由电感的感抗构成,低频时R很小,磁芯的磁导率较高,因此电感量较大,L起主要作用,电磁干扰被反射而受到抑制;并且这时磁芯的损耗较小,整个器件是一个低损耗、高Q特性的电感,这种电感容易造成谐振因此在低频段,有时可能出现使用铁氧体磁珠后干扰增强的现象。 在高频段,阻抗由电阻成分构成,随着频率升高,磁芯的磁导率降低,导致电感的电感量减小,感抗成分减小。但是,这时磁芯的损耗增加,电阻成分增加,导致总的阻抗增加,当高频信号通过铁氧体时,电磁干扰被吸收并转换成热能的形式耗散掉。

铁氧体抑制元件广泛应用于印制电路板、电源线和数据线上。如在印制板的电源线入口端加上铁氧体抑制元件,就可以滤除高频干扰。铁氧体磁环或磁珠专用于抑制信号线、电源线上的高频干扰和尖峰干扰,它也具有吸收静电放电脉冲干扰的能力。

使用片式磁珠还是片式电感主要还在于实际应用场合。在谐振电路中需要使用片式电感。而需要消除不需要的EMI噪声时,使用片式磁珠是最佳的选择。 片式磁珠和片式电感的应用场合: 片式电感: 射频(RF)和无线通讯,信息技术设备,雷达检波器,汽车电子,蜂窝电话,寻呼机,音频设备,PDAs(个人数字助理),无线遥控系统以及低压供电模块等。片式磁珠: 时钟发生电路,模拟电路和数字电路之间的滤波,I/O输入/输出内部连接器(比如串口,并口,键盘,鼠标,长途电信,本地局域网),射频(RF)电路和易受干扰的逻辑设备之间,供电电路中滤除高频传导干扰,计算机,打印机,录像机(VCRS),电视系统和手提电话中的EMI噪声抑止。

磁珠的单位是欧姆,因为磁珠的单位是按照它在某一频率产生的阻抗来标称的,阻抗的单位也是欧姆。磁珠的DATASHEET上一般会提供频率和阻抗的特性曲线图,一般以100MHz为标准,比如是在100MHz频率的时候磁珠的阻抗相当于1000欧姆。针对我们所要滤波的频段需要选取磁珠阻抗越大越好,通常情况下选取600欧姆阻抗以上的。

另外选择磁珠时需要注意磁珠的通流量,一般需要降额80%处理,用在电源电路时要考虑直流阻抗对压降影响。

RF与EMC小助手 技术专区

原文标题:EMC设计重点:电感、电容、磁珠

文章出处:【微信号:gh_d145c2054c9d,微信公众号:RF与EMC小助手】欢迎添加关注!文章转载请注明出处。

关注电子发烧友微信

有趣有料的资讯及技术干货

下载发烧友APP

打造属于您的人脉电子圈

关注发烧友课堂

锁定最新课程活动及技术直播
收藏 人收藏
分享:

评论

相关推荐

贴片钽电容选型建议

钽电容相关电压主要有:额定电压、降额电压、浪涌电压(可理解为最大耐压),额定电压即为产品型号中的“标....

发表于 01-22 15:40 次阅读 0条评论
贴片钽电容选型建议

CBB22电容与MPK电容的差别与cbb22电容好坏怎样测量

安规电容与CBB22电容主要差别在于外包封方式。安规电容的盒式结构阻燃性能和密封性相对要好些,但现在....

发表于 01-22 14:48 次阅读 0条评论
CBB22电容与MPK电容的差别与cbb22电容好坏怎样测量

贴片和插件钽电容封装及规格

贴片电容的优点首要在于生产方面,其自动化程度高,精度也高,在运输途中不像插件式那样容易受损。但是工艺....

发表于 01-22 14:32 次阅读 0条评论
贴片和插件钽电容封装及规格

插件和贴片铝电解电容封装

对于贴片铝电解电容封装来说,其阴极采用的材料是电解液,这是个也是我们见得最多使用最广泛的电容。它的特....

发表于 01-22 13:51 次阅读 0条评论
插件和贴片铝电解电容封装

电容器的基本特性与十大电容优缺点揭秘

在电子电路中使用电容器时,若电子电路上的电压高于电容器两端的电压,电容器就充电,直到电容器上建立的电....

发表于 01-22 11:37 次阅读 0条评论
电容器的基本特性与十大电容优缺点揭秘

金属化薄膜电容原理结构与使用注意事项

金属化薄膜电容是以有机塑料薄膜做介质,以金属化薄膜做电极,通过卷绕方式制成(叠片结构除外)制成的电容....

发表于 01-22 10:40 次阅读 0条评论
金属化薄膜电容原理结构与使用注意事项

电容式湿度传感器_电容式湿度传感器工作原理

人类的生存和社会活动与湿度密切相关。随着现代化的发展,很难找出一个与湿度无关的领域来。由于应用领域不....

发表于 01-21 11:10 次阅读 0条评论
电容式湿度传感器_电容式湿度传感器工作原理

万用表型号及分类大全

万用表又称为复用表、多用表、三用表、繁用表等,是电力电子等部门不可缺少的测量仪表,一般以测量电压、电....

发表于 01-18 18:40 次阅读 0条评论
万用表型号及分类大全

磁珠磁环的主要失效机理以及使用的注意事项

磁珠磁环的主要失效机理是机械应力和热应力。作为导磁材料,磁珠磁环的脆性较强,在受到外部机械应力(如冲....

的头像 电子工程专辑 发表于 01-18 15:15 次阅读 0条评论
磁珠磁环的主要失效机理以及使用的注意事项

日光灯引发火灾的主要部件是什么

虽然任何荧光灯都可以在此ANSI规范规定的该类型荧光灯额定功率更高的功率下工作,但是它的寿命会明显下....

发表于 01-18 10:48 次阅读 0条评论
日光灯引发火灾的主要部件是什么

详细解析电磁兼容设计时应遵循的11个基本原则

电子线路设计准则电子线路设计者往往只考虑产品的功 能,而没有将功能和电磁兼容性综合考虑,因此产品在完....

的头像 贸泽电子设计圈 发表于 01-16 15:35 次阅读 0条评论
详细解析电磁兼容设计时应遵循的11个基本原则

电容和电阻是如何组成高通滤波器?原理解析

高通滤波器是一种让某一频率以上的信号分量通过,而对该频率以下的信号分量大大抑制的电容、电感与电阻等器....

发表于 01-15 13:36 次阅读 0条评论
电容和电阻是如何组成高通滤波器?原理解析

电感怎么测量好坏_万用表如何判断电感的好坏

本文主要介绍了电感的定义、电感特性以及电感的结构,其次介绍了电感的主要参数与电感的功能用途,最后介绍....

发表于 01-13 09:12 次阅读 0条评论
电感怎么测量好坏_万用表如何判断电感的好坏

一颗小小退偶电容的布局布线与取值技巧

这叫去耦而非滤波,用于对付电源回路中的高频噪声。对于常规低速数字电路和一般模拟电路而言,其工作频率不....

的头像 张飞实战电子 发表于 01-12 09:34 次阅读 0条评论
一颗小小退偶电容的布局布线与取值技巧

buck变换器的滤波电容电感怎么选取及用法

本文主要介绍了buck变换器的滤波电容电感怎么选取及用法。选择Buck变换器电感的主要依据是变换器输....

发表于 01-10 17:17 次阅读 0条评论
buck变换器的滤波电容电感怎么选取及用法

薄膜电感LQP03TN和LQP03TG的距离差异解析

LQP03TN是当时商品化的0201尺寸,是以具有业界超高水平Q特性为特征的销售业绩极好的产品。LQ....

的头像 村田中文技术社区 发表于 01-09 15:34 次阅读 0条评论
薄膜电感LQP03TN和LQP03TG的距离差异解析

从思考步骤、计算公式、实例上为DC/DC转换器选择电感和电容

在DC/DC转换器的设计上,电感和电容器的选择特別重要,必须充分理解电路工作、电流路径、各器件担负什....

的头像 21ic电子网 发表于 01-09 15:29 次阅读 0条评论
从思考步骤、计算公式、实例上为DC/DC转换器选择电感和电容

电源层的分割、数模设计以及降低数字和模拟信号间的相互干扰

板层的结构板层的结构是决定系统的EMC性能一个很重要的因素。一个好的板层结构对抑制PCB中辐射起到良....

的头像 传感器技术 发表于 01-08 11:10 次阅读 0条评论
电源层的分割、数模设计以及降低数字和模拟信号间的相互干扰