MOSFET规格书/datasheet该如何理解

 

 引言

作为一个电子工程师、技术人员,相信大家对 MOSFET 都不会陌生。

工程师们要选用某个型号的 MOSFET,首先要看的就是规格书/datasheet,拿到 MOSFET 的规格书/datasheet 时,我们要怎么去理解那十几页到几十页的内容呢?

本文的目的就是为了和大家分享一下我对 MOSFET 规格书/datasheet 的理解和一些观点,有什么错误、不当的地方请大家指出,也希望大家分享一下自己的一些看法,大家一起学习。

PS: 1. 后续内容中规格书/datasheet 统一称为 datasheet

2. 本文中有关 MOSFET datasheet 的数据截图来自英飞凌 IPP60R190C6 datasheet

1、VDS

Datasheet 上电气参数第一个就是 V(BR)DSS,即 DS 击穿电压,也就是我们关心的 MOSFET 的耐压

此处V(BR)DSS的最小值是600V,是不是表示设计中只要MOSFET上电压不超过600V MOSFET就能工作在安全状态?

相信很多人的答案是“是!”,曾经我也是这么认为的,但这个正确答案是“不是!”

这个参数是有条件的,这个最小值600V是在Tj=25℃的值,也就是只有在Tj=25℃时,MOSFET上电压不超过600V才算是工作在安全状态。

MOSFET V(BR)DSS是正温度系数的,其实datasheet上有一张V(BR)DSS与Tj的关系图,如下:

要是电源用在寒冷的地方,环境温度低到-40℃甚至更低的话,MOSFET V(BR)DSS值<560V,这时候600V就已经超过MOSFET耐压了。  

所以在MOSFET使用中,我们都会保留一定的VDS的电压裕量,其中一点就是为了考虑到低温时MOSFET V(BR)DSS值变小了,另外一点是为了应对各种恶例条件下开关机的VDS电压尖峰。

2、ID    

相信大家都知道 MOSFET 最初都是按 xA, xV 的命名方式(比如 20N60~),慢慢的都转变成Rds(on)和电压的命名方式(比如 IPx60R190C6, 190 就是指 Rds(on)~).

其实从电流到 Rds(on)这种命名方式的转变就表明 ID 和 Rds(on)是有着直接联系的,那么它们之间有什么关系呢?

在说明 ID 和 Rds(on)的关系之前,先得跟大家聊聊封装和结温:

1). 封装:影响我们选择 MOSFET 的条件有哪些?

a) 功耗跟散热性能 -->比如:体积大的封装相比体积小的封装能够承受更大的损耗;铁封比塑封的散热性能更好.

b) 对于高压 MOSFET 还得考虑爬电距离 -->高压的 MOSFET 就没有 SO-8 封装的,因为G/D/S 间的爬电距离不够

c) 对于低压 MOSFET 还得考虑寄生参数 -->引脚会带来额外的寄生电感、电阻,寄生电感往往会影响到驱动信号,寄生电阻会影响到 Rds(on)的值

d) 空间/体积 -->对于一些对体积要求严格的电源,贴片 MOSFET 就显得有优势了

2). 结温:MOSFET 的最高结温 Tj_max=150℃,超过此温度会损坏 MOSFET,实际使用中建议不要超过 70%~90% Tj_max.

回到正题,MOSFET ID和Rds(on)的关系:

(1) 封装能够承受的损耗和封装的散热性能(热阻)之间的关系

(2) MOSFET通过电流ID产生的损耗

(1), (2)联立,计算得到ID和Rds_on的关系

今天看到一篇文档,上面有提到MOSFET的寿命是跟温度有关的。(下图红色框中)

3、Rds(on)

从MOSFET Rds(on)与Tj的图表中可以看到:Tj增加Rds(on)增大,即Rds(on)是正温度系数,MOSFET的这一特性使得MOSFET易于并联使用。

4、Vgs(th)

相信这个值大家都熟悉,但是Vgs(th)是负温度系数有多少人知道,你知道吗?(下面两图分别来自BSC010NE2LS和IPP075N15N3 G datasheet.)

相信会有很多人没有注意到Vgs(th)的这一特性,这也是正常的,因为高压MOSFET的datasheet中压根就没有这个图,这一点可能是因为高压MOSFET的Vgs(th)值一般都是2.5V以上,高温时也就到2V左右。但对于低压MOSFET就有点不一样了,很多低压MOSFET的Vgs(th)在常温时就很低,比如BSC010NE2LS的Vgs(th)是1.2V~2V,高温时最低都要接近0.8V了,这样只要在Gate有一个很小的尖峰就可能误触发MOSFET开启从而引起整个电源系统异常。

所以,低压MOSFET使用时一定要留意Vgs(th)的这个负温度系数的特性!!

5、Ciss, Coss, Crss

MOSFET 带寄生电容的等效模型

Ciss=Cgd+Cgs, Coss=Cgd+Cds, Crss=Cgd

Ciss, Coss, Crss的容值都是随着VDS电压改变而改变的,如下图:

在 LLC 拓扑中,减小死区时间可以提高效率,但过小的死区时间会导致无法实现 ZVS。因此选择在 VDS 在低压时 Coss 较小的 MOSFET 可以让 LLC 更加容易实现 ZVS,死区时间也可以适当减小,从而提升效率。

6、Qg, Qgs, Qgd

从此图中能够看出:

1. Qg并不等于Qgs+Qgd!!

2. Vgs高,Qg大,而Qg大,驱动损耗大

7、SOA

SOA曲线可以分为4个部分:

1). Rds_on的限制,如下图红色线附近部分

此图中:当VDS=1V时,Y轴对应的ID为2A,Rds=VDS/ID=0.5R ==>Tj=150℃时,Rds(on)约为0.5R.当VDS=10V时,Y轴对应的ID为20A,Rds=VDS/ID=0.5R ==>Tj=150℃时,Rds(on)约为0.5R.所以,此部分曲线中,SOA表现为Tj_max时RDS(on)的限制.

MOSFET datasheet上往往只有Tc=25和80℃时的SOA,但实际应用中不会刚好就是在Tc=25或者80℃,这时候就得想办法把25℃或者80℃时的SOA转换成实际Tc时的曲线。怎样转换呢?有兴趣的可以发表一下意见......

2).最大脉冲电流限制,如下图红色线附近部分

此部分为MOSFET的最大脉冲电流限制,此最大电流对应ID_pulse.

3). VBR(DSS)击穿电压限制,如下图红色线附近部分

此部分为MOSFET VBR(DSS)的限制,最大电压不能超过VBR(DSS) ==>所以在雪崩时,SOA图是没有参考意义的

4). 器件所能够承受的最大的损耗限制,如下图红色线附近部分

上述曲线是怎么来的?这里以图中红线附近的那条线(10us)来分析。

上图中,1处电压、电流分别为:88V, 59A,2处电压、电流分别为:600V, 8.5A。

MOSFET要工作在SOA,即要让MOSFET的结温不超过Tj_max(150℃),Tj_max=Tc+PD*ZthJC, ZthJC为瞬态热阻.

SOA图中,D=0,即为single pulse,红线附近的那条线上时间是10us即10^-5s,从瞬态热阻曲线上可以得到ZthJC=2.4*10^-2

从以上得到的参数可以计算出:

1处的Tj约为:25+88*59*2.4*10^-2=149.6℃

2处的Tj约为:25+600*8.5*2.4*10^-2=147.4℃

MOSFET datasheet上往往只有Tc=25和80℃时的SOA,但实际应用中不会刚好就是在Tc=25或者80℃,这时候就得想办法把25℃或者80℃时的SOA转换成实际Tc时的曲线。怎样转换呢?

有兴趣的可以发表一下意见~

把25℃时的SOA转换成100℃时的曲线:

1). 在25℃的SOA上任意取一点,读出VDS, ID,时间等信息

如上图,1处电压、电流分别为:88V, 59A, tp=10us

计算出对应的功耗:PD=VDS*ID=88*59=5192 (a)

PD=(Tj_max-Tc)/ZthJC -->此图对应为Tc=25℃ (b)

(a),(b)联立,可以求得ZthJC=(Tj_max-25)/PD=0.024

2). 对于同样的tp的SOA线上,瞬态热阻ZthJC保持不变,Tc=100℃,ZthJC=0.024.

3). 上图中1点电压为88V,Tc=100℃时,PD=(Tj_max-100)/ZthJC=2083

从而可以算出此时最大电流为I=PD/VDS=2083/88=23.67A

4). 同样的方法可以算出电压为600V,Tc=100℃时的最大电流

5). 把电压电流的坐标在图上标出来,可以得到10us的SOA线,同样的方法可以得到其他tp对应的SOA(当然这里得到的SOA还需要结合Tc=100℃时的其他限制条件)

这里的重点就是ZthJC,瞬态热阻在同样tp和D的条件下是一样的,再结合功耗,得到不同电压条件下的电流

另外一个问题,ZthJC/瞬态热阻计算:

1. 当占空比D不在ZthJC曲线中时,怎么计算?

2. 当tp<10us是,怎么计算?

1). 当占空比D不在ZthJC曲线中时:(其中,SthJC(t)是single pulse对应的瞬态热阻)

2. 当tp<10us时:

8、Avalanche

EAS:单次雪崩能量,EAR:重复雪崩能量,IAR:重复雪崩电流

雪崩时VDS,ID典型波形:

上图展开后,如下:

MOSFET雪崩时,波形上一个显著的特点是VDS电压被钳位,即上图中VDS有一个明显的平台

MOSFET雪崩的产生:

在MOSFET的结构中,实际上是存在一个寄生三极管的,如上图。在MOSFET的设计中也会采取各种措施去让寄生三极管不起作用,如减小P+Body中的横向电阻RB。正常情况下,流过RB的电流很小,寄生三极管的VBE约等于0,三极管是处在关闭状态。雪崩发生时,如果流过RB的雪崩电流达到一定的大小,VBE大于三极管VBE的开启电压,寄生三极管开通,这样将会引起MOSFET无法正常关断,从而损坏MOSFET。

因此,MOSFET的雪崩能力主要体现在以下两个方面:

1. 最大雪崩电流 ==>IAR

2. MOSFET的最大结温Tj_max ==>EAS、EAR 雪崩能量引起发热导致的温升

1)单次雪崩能量计算:

上图是典型的单次雪崩VDS,ID波形,对应的单次雪崩能量为:

其中,VBR=1.3BVDSS, L为提供雪崩能量的电感

雪崩能量的典型测试电路如下:

计算出来EAS后,对比datasheet上的EAS值,若在datasheet的范围内,则可认为是安全的(当然前提是雪崩电流同时,还得注意,EAS随结温的增加是减小的,如下图:

2)重复雪崩能量 EAR:

上图为典型的重复雪崩波形,对应的重复雪崩能量为:

其中,VBR=1.3BVDSS.

计算出来EAR后,对比datasheet上的EAR值,若在datasheet的范围内,则可认为是安全的(此处默认重复雪崩电流同时也得考虑结温的影响

9、体内二极管参数

VSD,二极管正向压降 ==>这个参数不是关注的重点,trr,二极管反向回复时间 ==>越小越好,Qrr,反向恢复电荷 ==>Qrr大小关系到MOSFET的开关损耗,越小越好,trr越小此值也会小

10、不同拓扑 MOSFET 的选择

针对不同的拓扑,对MOSFET的参数有什么不同的要求呢?怎么选择适合的MOSFET?

欢迎大家发表意见,看法 

1). 反激:

反激由于变压器漏感的存在,MOSFET会存在一定的尖峰,因此反激选择MOSFET时,我们要注意耐压值。通常对于全电压的输入,MOSFET耐压(BVDSS)得选600V以上,一般会选择650V。

若是QR反激,为了提高效率,我们会让MOSFET开通时的谷底电压尽量低,这时需要取稍大一些的反射电压,这样MOSFET的耐压值得选更高,通常会选择800V MOSFET。

2). PFC、双管正激等硬开关:

a) 对于PFC、双管正激等常见硬开关拓扑,MOSFET没有像反激那么高的VDS尖峰,通常MOSFET耐压可以选500V, 600V。

b) 硬开关拓扑MOSFET存在较大的开关损耗,为了降低开关损耗,我们可以选择开关更快的MOSFET。而Qg的大小直接影响到MOSFET的开关速度,选择较小Qg的MOSFET有利于减小硬开关拓扑的开关损耗

3). LLC谐振、移相全桥等软开关拓扑:

LLC、移相全桥等软开关拓扑的软开关是通过谐振,在MOSFET开通前让MOSFET的体二极管提前开通实现的。由于二极管的提前导通,在MOSFET开通时二极管的电流存在一个反向恢复,若反向恢复的时间过长,会导致上下管出现直通,损坏MOSFET。因此在这一类拓扑中,我们需要选择trr,Qrr小,也就是选择带有快恢复特性的体二极管的MOSFET。

4). 防反接,Oring MOSFET

这类用法的作用是将MOSFET作为开关,正常工作时管子一直导通,工作中不会出现较高的频率开关,因此管子基本上无开关损耗,损耗主要是导通损耗。选择这类MOS时,我们应该主要考虑Rds(on),而不去关心其他参数。

原文标题:深入理解MOSFET规格书/datasheet

文章出处:【微信号:fcsde-sh,微信公众号:张飞实战电子】欢迎添加关注!文章转载请注明出处。

评论

王德森
不错,我们企业就是封装MOSFET的
10-14 11:45

相关推荐:

深入理解MOSFET规格书及应用设计

MOS的导通电阻随温度上升而上升,下图显示该MOS的导通电阻在结温为140度的时候,为20度时候的2....

的头像 电子工程专辑 发表于 10-16 08:55 次阅读 0条评论
深入理解MOSFET规格书及应用设计

MOSFET及IGBT在电力电子应用设计

多数情况下,功率变换器的传导干扰以共模干扰为主。本文介绍了一种基于补偿原理的无源共模干扰抑制技术,并....

的头像 贸泽电子设计圈 发表于 09-28 06:59 次阅读 0条评论
MOSFET及IGBT在电力电子应用设计

利用900V MOSFET管提升反激式转换器的输出功率和能效

意法半导体 (ST) 同级领先的900V MOSFET晶体管,提升反激式转换器的输出功率和能效

的头像 意法半导体IPG 发表于 09-21 14:45 次阅读 0条评论
利用900V MOSFET管提升反激式转换器的输出功率和能效

900VMDmesh™ K5超结MOSFET管满足更高功率和更高能效的系统需求

新品登场

的头像 意法半导体IPG 发表于 09-20 17:53 次阅读 0条评论
900VMDmesh™ K5超结MOSFET管满足更高功率和更高能效的系统需求

MOSFET知识点全集,初级工程师学习利器

MOSFET依照其“通道”(工作载流子)的极性不同,可分为“N型”与“P型” 的两种类型,通常又称为....

的头像 硬件十万个为什么 发表于 09-13 14:45 次阅读 1条评论
MOSFET知识点全集,初级工程师学习利器

快速60V高压侧N沟道MOSFET驱动器提供100%占空比能力

加利福尼亚州米尔皮塔斯 (MILPITAS, CA) 和马萨诸塞州诺伍德 (NORWOOD, MA)....

发表于 09-11 09:36 次阅读 0条评论
快速60V高压侧N沟道MOSFET驱动器提供100%占空比能力

功率半导体封测厂主攻MOSFET,有望新突破

捷敏2017年第2季获利已经创下历史次高,上半年EPS为2.39元,7月营收也下营收新高水准,市场看....

发表于 08-31 06:38 次阅读 0条评论
功率半导体封测厂主攻MOSFET,有望新突破

Mosfet驱动电路开发进阶之路

常见的MOS管驱动方式有非隔离的直接驱动、自举驱动,和有隔离的变压器驱动、光耦隔离驱动等。

的头像 张飞实战电子 发表于 08-30 15:20 次阅读 0条评论
Mosfet驱动电路开发进阶之路

内存、MOSFET大缺货开始影响下游系统厂

第3季进入传统电子产品销售旺季,但今年受到DRAM、NAND/NOR Flash缺货冲击,加上金氧半....

发表于 08-14 09:11 次阅读 2条评论
内存、MOSFET大缺货开始影响下游系统厂

场效应管(MOSFET)检测方法与经验

根据场效应管的PN结正、反向电阻值不一样的现象,可以判别出结型场效应管的三个电极。

发表于 08-04 10:37 次阅读 0条评论
场效应管(MOSFET)检测方法与经验

Allegro MicroSystems, LLC推出全新汽车级半桥MOSFET驱动器IC

美国马萨诸塞州伍斯特市 – Allegro MicroSystems,LLC宣布推出两款全新N沟道功....

发表于 08-02 18:37 次阅读 0条评论
Allegro MicroSystems, LLC推出全新汽车级半桥MOSFET驱动器IC

基于MOSFET控制的大范围连续可调(0~45V) 的小功率稳压电源设计实例

功率场效应管MOSFET是一种单极型电压控制器件,它不但具有自关断能力,而且具有驱动功率小,关断速度....

发表于 08-02 14:01 次阅读 1条评论
基于MOSFET控制的大范围连续可调(0~45V) 的小功率稳压电源设计实例

自我保护型 MOSFET 可在汽车应用的严苛环境中提供更高的可靠性

以前曾多次提及,汽车电子环境非常严苛!如图 1 所示,由于负载瞬态和感应场衰变,汽车的额定电池电压可....

发表于 07-20 15:38 次阅读 0条评论
自我保护型 MOSFET 可在汽车应用的严苛环境中提供更高的可靠性

快速 60V 保护的高压侧 N 沟道 MOSFET 驱动器提供 100% 占空比能力

加利福尼亚州米尔皮塔斯 (MILPITAS, CA) 和马萨诸塞州诺伍德 (NORWOOD, MA)....

发表于 07-14 16:08 次阅读 0条评论
快速 60V 保护的高压侧 N 沟道  MOSFET 驱动器提供 100% 占空比能力

快速 150V 高压侧 N 沟道 MOSFET 驱动器 提供 100% 占空比能力

加利福尼亚州米尔皮塔斯 (MILPITAS, CA) 和马萨诸塞州诺伍德 (NORWOOD, MA)....

发表于 07-07 15:00 次阅读 0条评论
快速 150V 高压侧 N 沟道 MOSFET 驱动器 提供 100% 占空比能力

高能效创新:带给您非凡力量

安森美半导体近期完成了收购,在成为全球领先的完备功率解决方案的征程中迈出了重要一步。安森美半导体通过....

发表于 06-27 17:01 次阅读 0条评论
高能效创新:带给您非凡力量

美高森美和Analog Devices公司在可扩展碳化硅MOSFET驱动器解决方案领域展开合作 以加快客户设计和上市速度

致力于在功耗、安全、可靠性和性能方面提供差异化半导体技术方案的领先供应商美高森美公司(Microse....

发表于 06-20 14:33 次阅读 0条评论
美高森美和Analog Devices公司在可扩展碳化硅MOSFET驱动器解决方案领域展开合作 以加快客户设计和上市速度

用GaN重新考虑功率密度

电力电子世界在1959年取得突破,当时Dawon Kahng和Martin Atalla在贝尔实验室....

发表于 06-08 15:57 次阅读 0条评论
用GaN重新考虑功率密度

对更高功率密度的需求推动电动工具创新解决方案

电动工具中直流电机的优先配置已从有刷直流大幅转向更可靠、更有效的无刷直流(BLDC)解决方案。典型的....

发表于 06-06 18:51 次阅读 0条评论
对更高功率密度的需求推动电动工具创新解决方案

Power Integrations推出紧凑、高效的SCALE-iDriver™ IC产品系列,可支持1700 V IGBT

美国加利福尼亚州圣何塞,2017年5月16日 – 中高压逆变器应用领域IGBT和MOSFET驱动器技....

发表于 05-19 15:45 次阅读 0条评论
Power Integrations推出紧凑、高效的SCALE-iDriver™ IC产品系列,可支持1700 V IGBT