0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

保姆级氮化镓充电器拆解:刨根问底,搞清楚氮化镓为什么那么猛!

话说科技 来源:话说科技 作者:话说科技 2021-12-09 14:55 次阅读

2021 最新氮化镓充电器拆解:小白也能看懂,涨见识!2021 氮化镓充电器深度拆解,不只看个爽,还能学知识!绿联 100W 氮化镓深度拆解:看看性能猛兽为什么那么猛!

不知道大家有没有好奇过:那些精致的电器里面都长什么样呢?

最近我拿到了绿联充电器系列扛鼎之作:绿联 100W 氮化镓充电器。它采用了氮化镓技术,在比苹果单口 61W 充电器还小的体积内,却塞下了 100W 超大功率。而且它还拥有 4 个接口,可以同时为四台设备稳定充电。

211209135507405875788.png

如果光说充电器的使用性能大家估计会觉得无趣。

正好我最近手痒了,那话不多说,就拆一个带大家看看性能野兽里面长什么样吧!

开箱:高级厚道,性能强悍

拆解之前,先来个快速开箱。

首先,包装内不仅有充电器本体,还随附了一根价值几十元的 1.5m 长的 100W 编织线(20V/5A),让用户开箱即可体验 100W 大功率,厚道。

21120913550732608647.png

充电器本体采用了颇具高级感的轻奢金属喷漆,正反面简洁大方。

211209135507721068601.png

整体为方形设计,三维:68×68×33 mm,比苹果 61W 原装充电器还小。

2112091355072024464848.png

↑绿联四口 100W 氮化镓充电器 vs 苹果单口 61W 充电器

充电器的插脚为折叠设计。不仅外出折叠节省空间,还可防止对其它物品的刮擦。

2112091355071852751918.png

充电方面。绿联 100W 氮化镓充电器具有 3C1A 四个接口,支持单口最高 100W 输出,可以同时为四台设备稳定充电。通过 POWER-Z 测得接口支持 PD3.0、QC4+、SCP、FCP 等多种快充协议。支持市面上大多数电脑、平板、手机快充,兼容性很强。

211209135507211473875.png

实测用 C1 单口充我的 MacBook Pro 2019(96W),充 30 分钟,可从 1% 充到 39%;换成 iPhone 13 Pro 30 分钟更可充到 62%,非常强悍!

2112091355082140982708.png

↑ MacBook Pro 2019(96W)10% 电量左右功率(89.69%)

2112091355082086988656.png

多口充电时,各口分流也和产品描述吻合。

2112091355081322748918.png

我现在工位上就是「电脑 + 平板 + 手机 + 耳机」组合。现在有了绿联 100W 氮化镓充电器,数码全家桶,的确一个插板口就够了。

开始之前,先了解一下充电原理

开始拆解之前,先简单说说充电器的充电原理。

中国目前家用是 220V 高压交流电。而手机只能承受不到 5V 的低压直流电,所以需要充电器来进行转换。

21120913550965614411.png

上图是氮化镓充电器的充电原理。充电器插入插座后首先会有一个 FUSE 保险丝保护电路,接下来是 EMI 滤波电路,滤除输入电流的噪声,然后通过整流电路转化为高压直流电,后面再接一个滤波储能电容来储电和滤除转化后的噪声。

接下来,高压直流电就要通过变压器转换为可供手机使用的低压直流电了。

哎,等等,如果真的是这样设计,那我们拿到手的充电器会特!别!大!

为什么呢?因为占充电器体积最大的就是变压器和储能电容,而它们的体积和电流的频率有关。假设咱们手机是个嗷嗷待哺的孩子,一次需要吃一碗饭。那变压器和储能电容就相当于是饭锅,电流频率就相当于是盛饭的勺子。勺子盛饭越快,需要的饭锅也就越小。

而咱们国内市电的频率是 50Hz,盛饭太慢了,需要的饭锅也就奇大无比。

所以咱们会在变压器前加一个开关 MOS 管,增加电流的频率,这样就能缩小变压器和储能电容的体积了。但是目前使用的开关管都是硅和锗半导体材料,开关频率在 60kHz 左右,充电速度还是比较慢,对付大功率设备也是力不从心。

所以氮化镓就应运而生了。它能将开关频率大幅提升,达到 100kHz 甚至 1MHz 以上。所以变压器的体积也能大幅减小。最后用氮化镓制作的充电器通常比传统硅材料小 50%!

这就是「氮化镓缩小充电器」的奥秘。

拆解:排线规整,堆料厚实

好了,开始拆解吧!

绿联 100W 氮化镓充电器采用了紧密的超声波焊接封装,拆开后,可以看到用黄色绝缘胶布严密包裹的充电器本体。胶布之下是黄铜散热片。

21120913550979338837.png

断开插头与充电器的连接线,取出充电器本体,可以看到充电器底部也覆有黄铜散热片,还增设导热垫和隔离板,以保证快速散热和充电安全。

2112091355091782415625.png

回到充电器本体。抠除散热和固定作用的填充硅胶后,可以看到充电器内部的完整构造。主体由输入、输出和背板三块 PCB 板组成,元部件排布较为规整紧凑。

21120913550994679232.png

我们先看输入端。

输入导线旁是盒装延时保险丝,进行熔断保护;旁边 2 个黄色的是安规 X 电容,套有绝缘脚,安规 Y 电容则在 PCB 主板背面,它们能降低电磁干扰;2 个黑色的则是 NTC 浪涌抑制电阻,可以保护电路和负载。

211209135509881780245.png

211209135509642291800.png

旁边黄褐色的是开关电源主控芯片供电电容,顾名思义,是给开关电源供电滴。

211209135510406111338.png

再到 EMI 滤波部分。铜线缠绕部分为两级共模电感设计,大的为扁平铜带绕制,小的为双线绕制。作用是滤除共模噪声,降低EMI干扰。

211209135510119505259.png

接下来是整流部分。PCB 输入板的背面则设有两颗整流桥,型号为 WRLSB80M,来自沃尔德,可以将高压交流电变为高压直流电。设置两颗有利于均摊发热,延长使用寿命。

2112091355101473180257.png

↑ PCB 输入板特写

2112091355102104174595.png

接下来是滤波储能部分。下方五个橙色标注的柱状体就是高压滤波储能电容了。它们来自艾华电子,三颗连接在主板上,两颗则连接在侧面 PCB 小板上。主要作用是储能供电和平缓输入电流的功效。

211209135510908631916.png

翻到 PCB 主板背面,右下角就是开关电源电路。里面的开关电源主控芯片,型号为 ON 安森美 NCP1342。它内置主动 X2 电容放电,具有过压、过流、过载短路、过温等多重保护功能。

2112091355102003724764.png

2112091355102058067191.jpeg

而在左侧,就是背板上最重要的开关 氮化镓MOS 管了,它采用的是纳微 NV6125 氮化镓功率芯片,最高支持 2MHz 开关频率。

2112091355101599122348.png

这款纳微氮化镓芯片是目前一流大厂的主流选择。我之前拆解过的 OPPO 50W 饼干氮化镓快充、联想thinkplus 65W 氮化镓口红电源 Pro 等均采用了这款芯片。

211209135511182238202.jpeg

好了,终于开始变压喽!

咱们回到正面。左边这个黄色绝缘胶布包裹的大家伙就是变压器,它的作用是把高压直流电变成低压直流电。多亏是用了氮化镓技术,不然其体积要大一倍左右。

2112091355111243812261.png

变压器旁边有一个红线黑头的小探头,它是热敏电阻,可以实时进行温度监控以保障充电安全 ~

211209135511872437619.png

接下来,来看输出端。

先看输出小板背面。

下边三个绝缘管包裹的是磁环降压电感(橙色标注);上面三个柱状体为降压输出二次滤波固态电容(青色标注)。它们分别用于三路输出电路的降压输出和滤波。

21120913551197221195.png

最下边黄铜缠绕的为滤波电感。电感旁边是两颗芯片。下面的MCU 无丝印,负责输出功率智能分配,上面小的是一颗输出VBUS开关管,型号为锐骏 RU30D20M2。

211209135511889510890.png

2112091355111948800762.jpeg

再看 PCB 输出小板正面。有 3C1A 四个 USB 接口。

2112091355111703813991.png

↑输出 PCB 板正面

注意下面这个紫色胶舌的 A 口,里面两侧的金属弹片要比中间加宽,这是为了适配华为大电流快充方案。市面上很多充电器都会在这里偷工减料,绿联还是一如既往的良心厚道 ~

2112091355111841879862.png

211209135511561731235.png

3C1A 四口由三路电路控制,C1 一路、C2 一路、C3 和 A 合一路。这三路电路由三颗智融 SW3516H 微控芯片控制。

2112091355122053761383.png

智融 SW3516H 芯片负责降压控制和协议识别,支持PPS/QC4+/QC4/FCP/SCP等多种快充协议,最大输出 PD 100W。

2112091355121737541588.jpeg

回到 USB 母座,它们之间的三个银色圆柱体是三颗独立的同步整流输出滤波固态电容,它们均来自中国台湾钰邦,可以滤除输出直流电中的交流成分。

2112091355121873419631.png

最右边两个丝印 501 的大家伙是两颗电感,作用也是输出滤波 ~

2112091355121039973809.png

至此,咱们充电器正面的林林总总终于讲完了。

最后咱们来看 PCB 主板背面。

211209135512816526101.png

右侧面的是同步整流部件,有利于输出稳定直流电压,减少静态损耗,提高能效。

211209135512691864212.png

中间是 EL 亿光 1018 光耦,用于反馈调节输出电压以稳定输出电压。

2112091355121254347115.png

开关电源电路上方是 RCD 吸收电路,黑色的是二极管 VDs,整体作用是吸收 MOS 关断的电压尖峰,保护 MOS 管。

2112091355121239277755.png

至此,拆解完成。

211209135513586892027.png

↑全家福

总结

从使用来看。绿联 100W 充电器支持 3C1A 四口 100W 大功率输出,可以同时为四台设备充电。实测 30 分钟可为 MacBook Pro 16 从 1% 充到 39%,性能强悍。

对于大部分用户来说,要解决「电脑 + 平板 + 手机 + 耳机」数码全家桶充电,一个绿联 100W 氮化镓的确就够了。不仅出差方便,居家办公也能减少杂乱,不占排插体积。

211209135513220443203.png

从拆解来看。绿联 100W 氮化镓充电器采用开关电源宽范围输出,次级协议芯片控制输出电压的典型架构。内部排线规整,开关 MOS 管为行业领先的纳微氮化镓功率芯片,整体用料非常扎实,在充电器大小,安全和性能方面控制的也都非常好。

不管从实际使用还是上手拆解,绿联 100W 氮化镓充电器表现都不错,推荐购买。

审核编辑:符乾江

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 充电器
    +关注

    关注

    99

    文章

    3837

    浏览量

    111525
  • 拆解
    +关注

    关注

    82

    文章

    601

    浏览量

    113537
收藏 人收藏

    评论

    相关推荐

    氮化充电器伤电池吗?氮化充电器怎么选?

    氮化充电器伤电池吗?氮化充电器怎么选? 氮化镓(GaN)充电器被广泛认为是下一代
    的头像 发表于 11-21 16:15 2034次阅读

    氮化充电器的优点?氮化充电器和普通充电器的区别?

    氮化充电器什么意思?氮化充电器的优点?氮化充电器和普通
    的头像 发表于 11-21 16:15 1182次阅读

    氮化芯片未来会取代硅芯片吗?

    降低了产品成本。搭载GaN的充电器具有元件数量少、调试方便、高频工作实现高转换效率等优点,可以简化设计,降低GaN快充的开发难度,有助于实现小体积、高效氮化快充设计。 Keep Tops氮化
    发表于 08-21 17:06

    氮化测试

    氮化
    jf_00834201
    发布于 :2023年07月13日 22:03:24

    有关氮化半导体的常见错误观念

    充电器。随后电动自行车、无人机和机器人很快采纳了氮化器件来减轻重量、缩小尺寸、降低成本和减少EMI。48 V DC/DC 转换器、车前照灯、车内风扇、座椅加热器和车载充电器等车载应用
    发表于 06-25 14:17

    拆解报告:橙果65W 2C1A氮化充电器

    支持65W快充,并可支持三台设备同时充电,相当实用。下面就带来这款充电器拆解,看看内部的用料和做工。 橙果65W氮化
    发表于 06-16 14:05

    什么是氮化功率芯片?

    通过SMT封装,GaNFast™ 氮化功率芯片实现氮化器件、驱动、控制和保护集成。这些GaNFast™功率芯片是一种易于使用的“数字输入、电源输出” (digital in, po
    发表于 06-15 16:03

    为什么氮化比硅更好?

    。 在器件层面,根据实际情况而言,归一化导通电阻(RDS(ON))和栅极电荷(QG)乘积得出的优值系数,氮化比硅好 5 倍到 20 倍。通过采用更小的晶体管和更短的电流路径,氮化
    发表于 06-15 15:53

    氮化: 历史与未来

    的存在。1875年,德布瓦博德兰(Paul-Émile Lecoq de Boisbaudran)在巴黎被发现,并以他祖国法国的拉丁语 Gallia (高卢)为这种元素命名它。纯氮化的熔点只有30
    发表于 06-15 15:50

    为什么氮化(GaN)很重要?

    极限。而上限更高的氮化,可以将充电效率、开关速度、产品尺寸和耐热性的优势有机统一,自然更受青睐。 随着全球能量需求的不断增加,采用氮化
    发表于 06-15 15:47

    什么是氮化(GaN)?

    具有更小的晶体管、更短的电流路径、超低的电阻和电容等优势,氮化充电器充电器件运行速度,比传统硅器件要快 100倍。 更重要的是,
    发表于 06-15 15:41

    氮化功率芯片如何在高频下实现更高的效率?

    氮化为单开关电路准谐振反激式带来了低电荷(低电容)、低损耗的优势。和传统慢速的硅器件,以及分立氮化的典型开关频率(65kHz)相比,集成式氮化
    发表于 06-15 15:35

    氮化功率芯片的优势

    时间。 更加环保:由于裸片尺寸小、制造工艺步骤少和功能集成,氮化功率芯片制造时的二氧化碳排放量,比硅器件的充电器解决方案低10倍。在较高的装配水平上,基于氮化
    发表于 06-15 15:32

    谁发明了氮化功率芯片?

    虽然低电压氮化功率芯片的学术研究,始于 2009 年左右的香港科技大学,但强大的高压氮化功率芯片平台的量产,则是由成立于 2014 年的纳微半导体最早进行研发的。纳微半导体的三位联
    发表于 06-15 15:28

    什么是氮化功率芯片?

    氮化功率芯片可以使充电器充电速度提高 3 倍,但体积和重量只有传统硅器件充电器的一半。或者在不增加体积或重量的情况下,提高
    发表于 06-15 14:17