0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

天线的HFSS和CST仿真介绍与对比

ExMh_zhishexues 来源:微波射频网 作者:94巨蟹座少年 2021-08-27 15:14 次阅读

摘要:

目前常用的电磁仿真软件有HFSS、CST、FEKO等,HFSS软件仿真电小物体相对而言要比CST更精确,CST对宽带天线的求解速度则比HFSS更胜一筹!因为CST是基于时域有限积分法,只需要输入一个时域脉冲就可以仿真宽带频谱结果。

本文使用的软件为CST2018和AnsysEM 18.2

0 1简单介绍

HFSS里内置的求解算法目前有:有限元算法(FEM),积分方程算法(IE),高频算法(SBR+ Solver), 混合算法(FEBI,IE-Region),域分解算法(DDM,FA-DDM),时域算法(Transient),特征模算法(CMA),本征模求解器(Eigenmode solver)等https://zhuanlan.zhihu.com/p/113897875

大部分人其实仿真简单的天线和滤波器等,使用HFSS的有限元算法和软件自身的自适应网格剖分和加密技术,设置好收敛的Max Mag Delta S(默认0.02)就足以满足其仿真需求。

对于软件的使用和其他算法求解器的设置这里就不做过多赘述了。

大部分工程师在使用HFSS软件时都会发现,其对电脑的配置要求较高,尤其是内存。而且电大尺寸、超宽带的仿真要求的算力更是难以满足。

CST恰恰弥补了HFSS仿真超宽带的短板,但是它在小尺寸、圆形等结构上的仿真精度不高。如下图所示,HFSS在边缘部分特别是圆形结构附件的三角网格剖分的特别细腻,而CST的六面体网格的剖分过于规整。

虽然缝隙和圆形等结构附近的剖分虽然可以采用CST的局部网格加密Local Mesh等,但初学者可能还是HFSS的傻瓜式自适应剖分比较人性化。

CST软件采用了电磁场全波时域仿真算法―有限积分法(FIT),对麦克斯韦积分方程进行离散化并迭代求解。由于其所采用的时域算法FIT,只须一步步迭代求解,不用进行矩阵求逆。此内在特性决定了,其适合的仿真结构涵盖电小、电中和电大,均可取得良好的表现。体矩量法、有限元法和有限积分法三者的计算量(体现在CPU 时间和所需内存)分别正比于所分网格数N的3次、2次和1.1~1.2次方,可以看出有限积分法对于算力的要求要低于HFSS的有限元法。

对于CST软件,大家常用的也是Time Domain Solver,除此之外,它还有频域求解器、本征模求解器、积分方程法、渐进计算、多层介质算法。

下一节我们会对两种软件的进行仿真精度对比,主要是看HFSS的FEM+自动网格剖分加密仿真和CST的Time Domain Solver和Frequency Domain Solver。

0 2脚本构建背馈式贴片天线

常见的矩形贴片天线的馈电方式有侧馈电和背馈式等,本次推文采用背馈电式进行仿真分析。

先选定基板为0.762mm厚度的Rogers4350B,谐振频率为5.8GHz。(左右滑动可看完整公式)

经过上面公式计算可得贴片天线的宽度和长度分别为16.9mm和13.3mm。

经过上两次推文HFSS-API入门第一弹:画个Box和HFSS-API入门第二弹:基本形状和操作的教学,现在可以直接撸一个背馈式贴片天线的HFSS vbs脚本(下载链接见文末,examples文件夹内):

clear;clc;path = mfilename(‘fullpath’);i=strfind(path,‘’);path=path(1:i(end));cd(path);addpath(genpath(strcat(path,‘hfssapi-by-Jianhui Huang’)));try % 填写路径 % tmpPrjFile:生成的aedt或者hfss(安装hfss15以下的后缀名为.hfss)项目文件的路径名 % tmpScriptFile:生成的vbs脚本文件的路径名 tmpPrjFile = ‘F:vbsScriptPatch_Probe_Feed.aedt’; tmpScriptFile = ‘F:vbsScriptauto_code.vbs’;

% hfssExePath:HFSS软件的路径 hfssExePath = ‘D:softwareHFSS15AnsysEM18.2Win64ansysedt.exe’;

% 创建一个可读写vbs脚本文件。 fid = fopen(tmpScriptFile, ‘wt’);

%创建一个新的HFSS项目并插入一个新的设计文件。 hfssNewProject(fid); Design_name=‘element’; hfssInsertDesign(fid, Design_name); Patch_W=16.9;Patch_L=13.3; Sub_W=35;Sub_L=30;Sub_H=0.762;copper_H=0.035; Probe_dy=-4;Probe_dx=0; Inner_R=0.5;Diel_R=exp(50/60*sqrt(1))*Inner_R;Outer_R=1.5;L0=2; % hfssVariableInsert(fid,DesignName,variableName, value, units,flag) hfssVariableInsert(fid,Design_name,‘Patch_W’, Patch_W, ‘mm’,1); hfssVariableInsert(fid,Design_name,‘Patch_L’, Patch_L, ‘mm’,1); hfssVariableInsert(fid,Design_name,‘Sub_W’, Sub_W, ‘mm’,1); hfssVariableInsert(fid,Design_name,‘Sub_L’, Sub_L, ‘mm’,1); hfssVariableInsert(fid,Design_name,‘Sub_H’, Sub_H, ‘mm’,1);

hfssVariableInsert(fid,Design_name,‘copper_H’, copper_H, ‘mm’,1); hfssVariableInsert(fid,Design_name,‘Probe_dx’, Probe_dx, ‘mm’,1); hfssVariableInsert(fid,Design_name,‘Probe_dy’, Probe_dy, ‘mm’,1); hfssVariableInsert(fid,Design_name,‘L0’, L0, ‘mm’,1); hfssVariableInsert(fid,Design_name,‘Inner_R’, Inner_R, ‘mm’,1); hfssVariableInsert(fid,Design_name,‘Diel_R’, ‘exp(50/60*sqrt(1))*Inner_R’, ‘mm’,2); hfssVariableInsert(fid,Design_name,‘Outer_R’, Outer_R, ‘mm’,1); % 画基板 % hfssBox(fid, BoxName, Start, Size, Units, Color, Material, Transparency, flag) hfssBox(fid, ‘Sub1’, {‘-Sub_W/2’, ‘-Sub_L/2’, ‘0mm’}, {‘Sub_W’, ‘Sub_L’, ‘Sub_H’}, ‘mm’,... “(0 128 128)”, “Rogers RO4350 (tm)”, 0, 2);

% 画贴片 hfssBox(fid, ‘Patch’, {‘-Patch_W/2’, ‘-Patch_L/2’, ‘Sub_H’}, {‘Patch_W’, ‘Patch_L’, ‘copper_H’}, ‘mm’,... “(255 128 0)”, “copper”, 0, 2); % 画GND hfssBox(fid, ‘GND’, {‘-Sub_W/2’, ‘-Sub_L/2’, ‘0mm’}, {‘Sub_W’, ‘Sub_L’, ‘-copper_H’}, ‘mm’,... “(128 128 128)”, “copper”, 0, 2);

% 画同轴部分 % 画同轴内芯 % hfssCylinder(fid, CylinderName, Axis, Center, Radius, Height, Units, Color, Material, Transparency, flag) hfssCylinder(fid, ‘Inner’, ‘Z’, {‘Probe_dx’, ‘Probe_dy’, ‘Sub_H+copper_H’}, ‘Inner_R’,‘-(Sub_H+copper_H*2+L0)’, ‘mm’,... “(128 128 128)”, “copper”, 0, 2);

hfssCylinder(fid, ‘Diel’, ‘Z’, {‘Probe_dx’, ‘Probe_dy’, ‘-copper_H’}, ‘Diel_R’,‘-L0’, ‘mm’,... “(0 128 128)”, “vacuum”, 0, 2); hfssCylinder(fid, ‘Outer’, ‘Z’, {‘Probe_dx’, ‘Probe_dy’, ‘-copper_H’}, ‘Outer_R’,‘-L0’, ‘mm’,... “(128 128 128)”, “copper”, 0, 2); % 地板开过孔 hfssCylinder(fid, ‘GND_hole’, ‘Z’, {‘Probe_dx’, ‘Probe_dy’, ‘0mm’}, ‘Diel_R’,‘-copper_H’, ‘mm’,... “(255 128 0)”, “vacuum”, 0, 2);

% 布尔操作 hfssSubtract(fid, {‘Outer’}, {‘Diel’}, true); hfssSubtract(fid, {‘Sub1’,‘Patch’,‘Diel’}, {‘Inner’}, true); hfssSubtract(fid, {‘GND’}, {‘GND_hole’}, false);

% 保存项目文件到指定路径 hfssSaveProject(fid, tmpPrjFile,1);

% Close the HFSS Script File. fclose(fid); disp(‘vbs脚本已生成!’);catch disp(‘程序出现异常!’); fclose(fid);end

上面的代码按个人情况按图索骥地修改tmpPrjFile,tmpScriptFile ,hfssExePath这几个路径和Design_name,将编写的MATLAB生成vbs脚本的.m文件与下载的hfssapi-by-Jianhui Huang放在同一个总文件夹内,点击运行即可生成vbs脚本(在自行赋值的tmpScriptFile的这个路径下)。vbs脚本可以直接点击运行,或者在HFSS软件中Run Script。建模完成后,自行添加Region,设置Radiation边界条件和Analysis的Setup,即可进行仿真(后续boundary和analysis同步上来后可以在脚本中就建立好)。

Analysis设置

此时仿真结果可以看出天线谐振频率偏向低频,且输入阻抗偏离50欧姆。

这时候有人肯定就会说,调天线就是玄学,这么多变量我怎么知道调节哪些变量,变量调成多少合适,难道直接用Optimization? 其实了解过贴片天线相关原理的就晓得,这时候,只需要调节天线的长度和馈电偏离中心的位置即可,前者影响谐振频率,后者影响天线的匹配。

话不多说直接上图,可以看出当馈电点位置偏离贴片天线中心2.5mm时,其阻抗匹配较优。

不过此时天线的谐振频率还偏向低频5.6GHz,因此适当缩短天线长度即可完成5.8GHz背馈式贴片天线的设置。

矩形贴片天线长度扫参结果

0 3CST和HFSS仿真结果对比

在HFSS上方菜单栏选择Modeler-》Export,保存为step格式。

然后打开CST在Export下选择导入上面的STEP文件,并删除Region等无关模型,设置好材料属性和边界条件。

采用时域求解器和默认的网格剖分设置,仿真的谐振频率在5.759GHz,与HFSS仿真结果相差40MHz。

CST时域Meshproperties和S11结果

直接将上述模型的求解器改为频域求解器并按下图设置网格剖分,仿真的谐振频率在5.825GHz,与HFSS仿真结果相差25MHz左右,已经很接近了。

CST频域Meshproperties和S11结果

总体来说,电小尺寸的微带贴片天线在HFSS的FEM+自动网格剖分加密仿真和CST的时域和频域求解器下,仿真结果差异可以接受。毕竟天线设计属于工科范畴,实际还要考虑加工、焊接容差等,所以还是需要打几次PCB板进行测试分析、调试优化,死磕这点仿真差异并没有啥意义。

基础性地写代码编注释,建模仿真还是挺费时间和精力的,希望大家多点赞分享!

代码分享区

hfssapi-by-Jianhui Huang

下载链接(后续代码持续在下面链接更新):

https://pan.baidu.com/s/1N0EE3Uv7krkypfzi9vxCvg

提取码:o5p5

代码已封装好打包为p文件不可修改,每次重新下载覆盖,按函数注释进行掉包即可!

注释事项:MATLAB生成vbs脚本的.m文件与hfssapi-by-Jianhui Huang放在同一个总文件夹内。不要在examples文件夹内运行.m文件!

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 天线
    +关注

    关注

    66

    文章

    3035

    浏览量

    139609
  • hfss
    +关注

    关注

    31

    文章

    167

    浏览量

    49853

原文标题:贴片天线的HFSS和CST仿真对比

文章出处:【微信号:zhishexueshuquan,微信公众号:知社学术圈】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    介绍一种使用HFSS进行车载天线布局仿真及评估天线性能的方法

    ANSYS HFSS的FEM算法求解电小尺寸问题的能力在业界已被广泛认可。
    的头像 发表于 02-25 11:43 523次阅读
    <b class='flag-5'>介绍</b>一种使用<b class='flag-5'>HFSS</b>进行车载<b class='flag-5'>天线</b>布局<b class='flag-5'>仿真</b>及评估<b class='flag-5'>天线</b>性能的方法

    CST—EMC(电磁兼容)仿真及分析工具

    CST全称为Computer Simulation Technology,具备完备的3D全波电磁场仿真技术。CST Studio Suite(CST工作室套装)是
    的头像 发表于 01-10 15:04 1013次阅读
    <b class='flag-5'>CST</b>—EMC(电磁兼容)<b class='flag-5'>仿真</b>及分析工具

    hfss怎么让天线发生弯曲

    HFSS是一种电磁仿真软件,用于设计和分析微波和无线电频段的天线。在HFSS中,让天线发生弯曲需要按照以下步骤进行操作: 步骤1:打开
    的头像 发表于 12-15 09:21 890次阅读

    盘点一下CST电磁仿真软件的求解器

    今天我们一起来盘点一下CST电磁仿真软件那些牛叉的求解器。快来数一下,你用了里面的几种吧!
    的头像 发表于 11-20 10:18 2967次阅读
    盘点一下<b class='flag-5'>CST</b>电磁<b class='flag-5'>仿真</b>软件的求解器

    HFSS技术突破之雷达天线与系统

    HFSS求解大型天线罩的重要功能: ●使用“flex meshing'功能加速初始网格剖分; ●用两维平面代替涂层、频选表面等3 E维薄层结构; ●使用“dynamic
    发表于 11-06 10:31 202次阅读
    <b class='flag-5'>HFSS</b>技术突破之雷达<b class='flag-5'>天线</b>与系统

    一个简单的喇叭天线DIY设计方案

    喇叭就是一个渐变的波导,它增大了辐射口径,可以获得较高的增益,而且制作简单,性能稳定,即便在较恶劣的环境中也能获得较好的方向图,下面我们就自己动手设计一个角锥喇叭天线,设计中将要用到两个软件:HDL_ANT 和CST(或HFSS
    发表于 09-29 08:16 329次阅读
    一个简单的喇叭<b class='flag-5'>天线</b>DIY设计方案

    HFSS电磁仿真设计应用详解

    HFSS电磁仿真设计应用详解》随书hfss仿真模型
    发表于 09-26 07:36

    基于HFSS的3D多芯片互连封装MMIC仿真设计

    MMIC仿真设计上并未包含。本设计基于HFSS,充分考虑实际封装寄生效应,建立了完整的3D多芯片互连精准模型,并给出了封装前后仿真结果对比分析。
    的头像 发表于 08-30 10:02 1602次阅读
    基于<b class='flag-5'>HFSS</b>的3D多芯片互连封装MMIC<b class='flag-5'>仿真</b>设计

    盘点一下国内的电磁仿真软件

    中望电磁仿真软件是广州中望龙腾软件股份有限公司开发的一款全波三维电磁仿真软件,具有仿真精度高、速度快、耗存小、建模能力强、简单易用等优点。不知道有没有同学使用过,和HFSS
    的头像 发表于 08-17 15:43 3362次阅读
    盘点一下国内的电磁<b class='flag-5'>仿真</b>软件

    CST-各类传输线仿真报告

    CST仿真软件提供了一个三维建模环境,使用户能够创建和编辑复杂的电磁结构,如天线、滤波器、传输线、电路板等。它包含了数值求解器和算法,用于计算电磁参数,并提供了强大的后处理和数据分析工具,用于评估和优化设计。
    发表于 08-11 11:04 2114次阅读
    <b class='flag-5'>CST</b>-各类传输线<b class='flag-5'>仿真</b>报告

    基于MATLAB和HFSS联合仿真的平面反射阵列天线

    本案例设计了一种单层风车型单元,以拓宽反射阵列天线的带宽。为了获得足够的相位范围,利用风车环贴片和圆环贴片来实现多谐振状态。所提出的单元在HFSS仿真获得了473.6°相位范围的线性相移曲线
    发表于 08-10 17:35 1357次阅读
    基于MATLAB和<b class='flag-5'>HFSS</b>联合<b class='flag-5'>仿真</b>的平面反射阵列<b class='flag-5'>天线</b>

    基于HFSS与Designer协同仿真设计和差网络

    HFSS对和差网络或其他复杂无源器件设计技术已经非常成熟,虽然可以解决电磁精度问题, 但仍面临很多问题,比如在设计真实的3D微波元件需花费数周的时间。另一方面电路仿真具有很高的速度,可快速仿真
    的头像 发表于 06-10 10:06 2362次阅读
    基于<b class='flag-5'>HFSS</b>与Designer协同<b class='flag-5'>仿真</b>设计和差网络

    CST电磁兼容性仿真—双脉冲3D仿真

    众所周知,达索系统的CST对于电磁兼容性仿真有着很好的精度和准确度。那么CST除了电磁兼容性仿真,SIPI仿真还能做哪些事呢?
    发表于 06-08 11:24 3821次阅读
    <b class='flag-5'>CST</b>电磁兼容性<b class='flag-5'>仿真</b>—双脉冲3D<b class='flag-5'>仿真</b>

    印刷八木天线仿真与设计

    前篇介绍了俄罗斯的网红Wi-Fi天线,其可看作是八木天线。对于八木天线,相信很多业内朋友都不陌生,这类天线长成这个样子。本篇详细
    发表于 05-23 10:27 1740次阅读
    印刷八木<b class='flag-5'>天线</b>的<b class='flag-5'>仿真</b>与设计

    如何使用HFSS设计5G天线阵列?

      仿真步骤如下:   步骤 1:使用 HFSS 天线工具包查找天线单元模板   为 5G 应用创建天线阵列的第一步是使用
    发表于 05-05 09:58