0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

GaN将在5G大规模MIMO部署中逐渐取代 LDMOS

安森美 来源:Qorvo半导体 作者:Qorvo半导体 2021-07-30 09:51 次阅读

相比其它半导体,GaN 是一种相对较新的技术,但它已然成为某些高射频、大功率应用的技术之选。虽然 LDMOS 技术目前仍在射频基站领域占有最大市场份额,但预计 GaN 将在 5G 大规模 MIMO 部署中逐渐取代 LDMOS。

在本系列的第一部分《5G 和 GaN 系列之一:全面了解 Sub-6Ghz 大规模 MIMO 基础设施》中,我们回顾了在全国范围内推动 5G 实施的大规模 MIMO 技术。尽管毫米波频率应用的潜力最终会显现,但在未来几年,5G 服务将主要采用 6GHz 以下频段传输。为实现 5G 服务目标,接下来几代基站设计都将要求显著提高射频前端的性能。

同时,工程师在设计基站时需要考虑更好地集成 RFFE 、缩小尺寸、降低功耗、提高输出功率、增加带宽、改进线性度,以及提高接收器灵敏度。所有这些都是为了满足收发器、RFFE 和天线之间更严格的耦合要求。这是一项艰巨的任务。满足这些需求并成功实现大规模 MIMO 的唯一方法就是使用经济高效的小型功率放大器,将它们集成进这些扩展的天线阵列。

◆◆助力 Sub-6 大规模 MIMO发展◆◆

自 20 世纪 90 年代,横向扩散金属氧化物半导体 (LDMOS) 技术开始进入射频功率放大器领域,尤其是 2GHz 以下频率应用,因为其成本较低。其最大的竞争对手为砷化镓(GaAs)放大器,后者非常适合更高频率应用,但其传输功率低且成本较高。

2G 数字移动网络推出后,LDMOS 在射频基站领域取得了市场主导地位,并且保持至今。然而,随着 3G 和 4G 网络的推出,LDMOS 功率放大器并未达到前几代产品的功效水平。尽管使用 Doherty 拓扑结构和包络跟踪可以提升性能,但 2014 年在中国部署 4G LTE 期间,设备制造商和运营商开始将氮化镓 (GaN)用作射频功率应用的下一代半导体技术。

相比其它半导体,GaN 是一种相对较新的技术,但它已然成为某些高射频、大功率应用的技术之选,比如需要长距离或以高功率传输信号的应用,因此非常适用于 6GHz 以下的 5G 基站。

高输出功率、线性度和功率效率促使网络 OEM 厂商从基于 LDMOS 技术的 PA 转向采用氮化镓技术的 PA。虽然 LDMOS 技术目前仍在射频基站领域占有最大市场份额,但预计 GaN 将在 5G 大规模 MIMO 部署中逐渐取代 LDMOS。

◆◆GaN 性能优势◆◆

更高功率密度是 GaN 的主要优势。由于 GaN 导带和价带之间的带隙要比 LDMOS 技术更高,所以 GaN 具有较高的击穿电压和功率密度,它可让信号以更高的功率水平传输,从而可扩大基站的覆盖范围。

GaN PA 的高功率密度还使其能够采用更小的尺寸,从而减少了 PCB 空间需求。在给定区域内,系统设计人员可以实现比其它技术更高的功率。或者,对于给定的功率级,系统设计人员可以缩小 RFFE 尺寸并降低成本。

更高的功率密度使 GaN 功率放大器能够在高达 250℉ 的温度下运行,这是硅基技术无法实现的温度水平。GaN 具有更高的散热性能,可以简化系统的散热和冷却要求,从而进一步缩小尺寸,降低成本。大型电信运营商面临巨额基础设施支出压力,因此尺寸更小、成本更低的设备对于在全国范围内普及 5G 将会大有帮助。

GaN 具有更高的能效,有助于降低基站运行成本。运营商开始寻找最大程度降低网络功耗的方法,并促使 OEM 采用提高系统效率、节省总能耗的设计。为满足需求,工程师开始转而采用 GaN 技术。在 Doherty PA 配置中,GaN 的平均效率高达 60%,输出功率为 100 W,显著降低了运行大规模 MIMO 系统所需的电能。

GaN 在高频率和高带宽条件下的高效率还有助于缩小大规模 MIMO 系统的尺寸。尽管 LDMOS 放大器性能的改进支持高达 4 GHz 频率范围,但 GaN 放大器可以高达 5 倍的功率密度实现 100 GHz 的频率传输。

由于 GaN 器件具备更高效率、更高输出阻抗和更低的寄生电容,因此更容易实现宽带匹配并扩展达到更高的输出功率。虽然这在毫米波应用中优势更为明显,但运营商可利用 6 GHz 以下频率同时在多个频段范围内进行传输。

运营商将不需要多个窄带无线频带,他们只需要一个适用于多个频段的宽带无线平台。GaN 可提供实现这些系统所需的频率范围和灵活性,同时还可以轻松扩展,以实现未来高频毫米波传输。

这并不是说,GaN 始终都是每个射频功放应用的正确选择。通常情况下,LDMOS 的定价更低,并且可以在某些频率下提供极具竞争力的线性度。此外,GaAs 在某些细分市场具有其特有的效率优势。然而,许多 LDMOS 厂商开始转向 GAN 是有原因的。他们意识到 GaN 在帮助运营商和基站 OEM 厂商实现 Sub-6 GHz Massive MIMO 目标方面发挥着至关重要的作用。

因为 GaN 在基站中的采用,以及在国防和航空航天等其它行业的广泛应用,GaN 的产量逐年增长。产量提高意味着经济规模更大,从而使 GaN 成为更经济实惠的解决方案。这还没有考虑更高能效、更小外形尺寸或多频段应用所带来的成本降低效益。

此外,线性度也将会随之提高。请记住,目前基站上使用的只是第二代 GaN 产品。LDMOS 之类的成熟技术已经达到 15 代。这是目前 GaN 领域中最活跃的研究课题,许多业内人士预计短期内有望实现市场领先的线性效率。

随着限制 GaN 广泛应用的约束因素逐渐消除,对于系统设计人员来说,了解如何将半导体器件应用到自己的设计变得至关重要。

◆◆嵌入式设计人员需要了解什么?◆◆

GaN 为嵌入式设计人员带来了许多性能优势,但毫无疑问也有一些这种材料独有的设计考量因素。本系列的下一篇将详细介绍嵌入式设计人员需要了解哪些内容才能充分利用 GaN 的潜力。我将在下一篇中纠正一些常见的误解,提供一些设计解决方案,并探讨 GaN 技术在射频应用及其它方面的发展。

编辑:jq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • GaN
    GaN
    +关注

    关注

    19

    文章

    1759

    浏览量

    67713

原文标题:从 LDMOS 转向 GaN

文章出处:【微信号:onsemi-china,微信公众号:安森美】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    美格智能联合罗德与施瓦茨完成5G RedCap模组SRM813Q验证,推动5G轻量化全面商用

    全球5G发展进入下半场,5G RedCap以其低成本、低功耗的特性成为行业焦点。近日,中国移动携手合作伙伴率先完成全球最大规模、最全场景、最全产业的RedCap现网规模试验,推动首批芯
    发表于 02-27 11:31

    5G 外置天线

    5G外置天线 新品介绍 5G圆顶天线和Whip天线旨在提供617 MHz至6000 MHz的宽带无缝高速互联网接入连接解决方案。这些天线的特点是高增益,即使在具有挑战性的环境也能确保强大的信号
    发表于 01-02 11:58

    WiFi 6下的大规模部署策略

    随着数字化时代的快速发展,我们正处于一个多设备、高密度连接的时代。在这个背景下,WiFi 6(802.11ax)作为一项新的无线通信标准,被广泛认为是满足未来大规模连接需求的关键技术。本文将深入研究WiFi 6在大规模部署中的关
    的头像 发表于 11-02 16:33 204次阅读

    大规模MIMO测试在衰落信道数量和信号带宽方面有哪些特点优势?

    更好的传输效果。而近年来大规模MIMO技术逐渐被广泛应用于移动通信领域,并在衰落信道数量和信号带宽方面体现了出色的特点优势。 大规模MIMO
    的头像 发表于 10-22 11:24 348次阅读

    大规模MIMO技术的原理、与传统MIMO相比的优势

      大规模MIMO(Massive MIMO)技术是一种利用大量天线进行信号传输和接收的技术,可以提高无线通信系统的容量、速率和可靠性。大规模MIM
    发表于 05-19 18:10 5523次阅读

    5G部署方案(2)#5G技术

    移动通信5G基站
    未来加油dz
    发布于 :2023年05月11日 11:39:56

    5G部署方案(1)#5G技术

    移动通信5G基站
    未来加油dz
    发布于 :2023年05月11日 11:39:27

    5G网络部署模式(1)#5G技术

    网络通信5G
    未来加油dz
    发布于 :2023年05月10日 23:12:33

    中国信通院公布 5G 标准必要专利全球最新排名:华为第一、小米首次进入前十

    5G-Advanced”)的第二阶段。5G经过多年的快速发展已实现大规模商用,逐渐成为推动人类社会数字化转型升级的关键支撑。根据GSA的研究,截至2023年3月,全球97个国家或地区
    发表于 05-10 10:39

    5G该如何进行地铁覆盖呢?

    ,是地铁覆盖的重点。   地铁隧道的长度通常超过一千米,内部狭窄逼仄,并且还伴有弯道,采用传统的定向天线,信号掠射角度小,局部信号衰减快,还容易被遮挡。即使是为5G而生的大规模天线AAU也难有
    发表于 05-06 15:01

    Wi-Fi6和5G对比分析哪个好?

    用武之地吗?   1 室内环境下   针对室内覆盖,5G和Wi-Fi 6都可以部署在大楼内的日常网络连接。通常,5G每平方米可容纳一个终端,相当于每平方公里100万个终端。因此,这种
    发表于 05-05 10:59

    5G是如何实现更高精度的定位呢?

      4G时代涌现出了滴滴打车,共享单车等基于用户地理位置的新应用形态;“5G定位”作为一个新的方向,物联网和智能化对基于其位置服务提出了更高的要求,对于解决室外到室内的“最后一公里”高精度定位
    发表于 05-05 10:53

    5G毫米波有哪些优势?

    毫秒级的时延保证;而工业视觉等引入人工智能所需的大规模计算往往需要在一定距离外进行,对空口时延有亚毫秒级别的严格要求。   5G毫米波的第四个优势是可支持密集小区部署5G毫米波系统可
    发表于 05-05 10:49

    如何计算5G下行峰值速率?

      一、基本概念   5G NR系统在LTE原有技术基础上,采用了一些新的技术和架构,NR继承了LTE的OFDMA和SC-FDMA,并且继承了LTE的多天线技术,MIMO流数比LTE更多,调制技术上
    发表于 05-05 10:05

    5G网络架构,5G的SDR和SDN是什么?

    10-20 MHz 的信道带宽,在 10 信道转换为大约 10 Gbps。而 5G 处理 100 MHz 到 500 MHz 范围内的带宽,并且通过大规模 MIMO 扩展,前传吞吐量可以达到 Tbps范围
    发表于 05-05 09:48