0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

14nm + 14nm怎么才能达成“比肩”7nm 性能?

旺材芯片 来源:EDN电子技术设计 作者:Demi 2021-07-02 16:39 次阅读

近日,《乌合麒麟撤回道歉,称3D堆叠就是芯片优化技术》事件在网上引起争论,今天ASPENCORE记者欧阳洋葱同学进一步对“ 14nm + 14nm 达成‘比肩’7nm 性能的问题”展开了专业的分析。

原文如下:

说点题外话,大家就当看个热闹吧,既然说旧工艺的“叠加”,那咱就聊聊叠加嘛。

首先还是强调一点,现在所谓的几 nm 工艺,这个几 nm 的数字并不是指晶体管的 gate length(或沟道长度)——很多人对此是存在误解的。比如台积电的 7nm 工艺,晶体管并不存在任何一个物理参数是 7nm。7nm 只是一个代号,你也可以叫它 α nm。14nm、7nm 这样的称谓是历史原因造成的,对此有兴趣的可以看我的文章:为什么说Intel 10nm工艺比别家7nm先进?(上)

有关 14nm + 14nm 达成“比肩”7nm 性能的问题,稍带脑洞地说两点,也算是无聊闲扯吧。

第一是光刻技术的“叠加”。把光刻比做是一把雕刻刀,用现在的“光刻刀”,只下刀一次的话,其实是无法“雕刻”出你期望的晶体管大小的(包括 EUV),而需要下好几次刀。虽然这个“叠加”和某媒体所说的 14nm + 14nm 并不是同一回事,但反正 14nm 也不是真的 14nm(前面说了,这个数字没意义),所以开个脑洞也没什么。

比如说三星的 8nm(8LPP)工艺,这种工艺下金属堆栈部分的最小金属间距是 44nm。我们知道 8nm 工艺,在光刻这道工序上还没有应用 EUV 极紫外光,仍然是 DUV 深紫外光,ArF(argon fluoride)光源本身的波长是 193nm。

这把“光刻刀”不够锐啊,咋办呢?要克服衍射效应,“雕刻”更小的图案,业界其实是引入了多种技术的,包括“叠加”的双重曝光、四重曝光(quad patterning)之类的;也就是既然一次刻不出那么高的精度,那就多刻几次(当然还需要配合周边的很多技术)。

三星应用的是一种叫 LELE 的技术,也是 DUV 多重曝光的一种技术方向。其过程是这样的(以下资料来自 Wikichip,图片也来自 Wikichip,我只是搬运工;我之前被 Wikichip 警告过一次,所以这里大家多点链接去看看原文吧。。。):

首先呢就是像上图这样,要有衬底、图案层(device layer)、硬掩膜(hardmask)。假定我们的目标是 64nm 的金属互联间距,那么 LELE 的步骤大致是下面这张图这样的:

这个步骤的大致过程就是光刻胶(photoresist)在 mask 覆盖下曝光,形成需要的图案。

第一步,上方有个掩膜图案,在光源照射下,能做出 128nm 的间距(左上图:Litho 1)。第二步,将图案通过第一次蚀刻转到硬掩膜之上——残留的硬掩膜会作为后续步骤的掩膜存在。

第三步,用另一组掩膜图案和光刻胶,重复该过程,仍采用相同的 128nm 图案间距进行光刻。最后,再用硬掩膜和光刻胶作为蚀刻掩膜,二次蚀刻后就在下面的图案层形成了所需的图案。

由于两次 litho-etch(光刻-蚀刻)操作,就形成了 64nm 的互联间距。

不需要去深入研究这个过程,反正知道是通过了两次差不多的操作才达成了 64nm 间距的。其实三星在 8nm 节点上用了 LELELELE,也就是四次上述的 LE 操作。说人话就是要刻最多 4 次,才能刻出所需的精度。

当然了,这个过程难度颇大,需要克服的工程难点也很多;而且步骤越多,成本也会越高;所以才需要用更锐的“光刻刀”嘛,比如 EUV 就比 DUV 更“锐”,也就不需要刻这么多次。但像 LELE 这样的操作,是不是可简单认为是某种旧工艺方案的“叠加”呢?(衰。。。说得过去吧。。。

第二点是针对这个话题,现在数码圈讨论比较多的 die 的 3D 堆叠。其实当时某媒体(微博)原文说法是“双芯叠加”,“特定的芯片设计方法”。人家也没说是垂直堆叠嘛(虽然感觉“叠”好像直觉上势必得垂直方向了;不管了),

更没说双芯必须同等 die size 或同等微架构的比较。而且原文提到了“将叠加性能提升至比肩 7nm 芯片的程度,并且功耗发热也很不错”。性能、功耗、成本分开来谈,还是很好的说法。

14nm 芯片只要堆料充分,性能超越 7nm 芯片不成问题啊。比如 Rocket Lake 的 8 核 Intel 酷睿处理器(i9-11900K)性能,肯定比高通骁龙 865 性能强吧。前者是 Intel 14nm,后者是台积电 7nm。这俩就不是一个平台、一个定位,连 14nm 和 7nm 这俩名字对比的维度都不同(或者也可以比 7nm 的 Ryzen 5 5600U。。。)。

何况现在很多超算芯片也没用尖端工艺,难道性能还比不上 5nm 手机 SoC 了?这真的在于你堆了多少料,虽然达成同等性能,越早的工艺要付出的成本和功耗会显著增加。(当然工艺代差不能太大,否则会涉及到一些更现实的工程问题)

这种对比只在于性能堆料,纯比性能(Performance),根本就没意义;又没比效率、功耗(Power)和成本(Area)。原文只说“功耗发热也很不错”。。。“不错”多含糊。。。是不是。。。

至于 3D 垂直堆叠,不管是 Intel Fevoros,还是台积电 CoWoS,芯片 die 堆起来应该可以吧。不过应该不是 compute die 直接叠,而且我估计如果两层 14nm 要达成同代设计 7nm 芯片的性能,可能散热会成问题。所以还是不要垂直堆起来吧,就 die size 做大点,或者多 die 以 side-by-side 的方式封装就好了。。。

前一阵 AMD 推的 3D V-cache,前不久才写了篇文章,这篇文章也总结了台积电目前的 3DFabric 封装工艺:把CPU三级缓存堆到192MB,AMD与台积电的合谋以上算纯开玩笑。。。

毕竟原文的说法就相当模糊,我们模糊点理解,也没什么问题吧。。。况且海思是做 IC 设计的,就算要做垂直堆叠,也必须与 foundry 厂合作才行,不是自己在家就搞一搞,然后就强于世界的。总体上就是扯。。。

补充:声明一下,可能很多人没搞清楚我想表达的东西,我的这篇回答只是个用于课外阅读的科普;本回答提到了如果要说“叠加”的话,在制造和封装层面,哪里可以体现出“叠加”这个词。

我并不赞同“双芯叠加”就能让 14nm“比肩”7nm,主要是效率方面。但用 14nm 造性能高于 7nm 工艺的芯片真的不是什么难事,只是功耗发热不对等罢了。而且本回答的第一部分提到光刻的多重曝光,DUV “光刻刀”并不是 14nm 的专属,EUV 也不是 7nm 的专属。DUV 一样可以造 7nm/10nm。。。

扩展:

有关于旧工艺需要多大面积来实现新工艺的同等设计。这一点有兴趣的同学可以去看看 Intel 今年桌面酷睿处理器的 Cypress Cove 核心。

Cypress Cove 就是个 14nm 工艺的核心,不过其设计是来自于 10nm 的 Sunny Cove(阳光海湾)。或者说 Cypress Cove 实际上是 Sunny Cove 向前移植(backport)的核心。当代不同制造工艺的移植,所需做的工作其实会比较繁琐,包括因为更大的晶体管和间距,布线之类的都可能在性能上表现出差别。

其实那些关心旧工艺做个 2x 面积的 die,能不能达成新工艺 1x 的 die 的,可以去研究下 Cypress Cove 和 Sunny Cove 的面积差异。我没仔细去查过,但估计应该可以查到(虽然可能某些报告估计要收费)。。。。。。

貌似 Arm 平台也有类似的例子吧。。。。。。

网友评论:终于有人聊些干货了!

@HelltoHell:终于有干货了,原文的说法很鸡贼,很废话,主要也是以误导人为目的的。但人那种说法还真……没什么错误……

@jusdejude :这篇回答解释的清楚!看完总算对这事儿有点概念了。这么说来,华为微博原文没毛病啊,人转发就更没毛病了啊,那这些数码专家揪着人家画手咬文嚼字到底是他们自己也没搞懂呢,还是借题发挥输出怨气呢?

还一堆在那洗比喻贴切的,两杯50度水加一起不等于100度,这类比哪里贴切了?不应该是,两杯烫水加一起实现了另一杯烫水同样的暖身体的功效嘛?

@Lee昂昨天:终于有人聊些干货了,谢谢你

@负离子3 :因为7nm线路已经足够接近理论上限,本身就需要额外的设计来保障正常工作,使用更大面积的14nm线路来顶一样性能的逻辑门数量,其实也没有需要简单计算的四倍面积之多,两倍都差不多性能了。

二来你以为这是堆料,没堆,两边计算单元数量差不多。我们老说新CPU比旧CPU更强,是指在同样的指甲盖上填了更多的电路。这边的事不一样,这边是用两个指甲盖放原来一个指甲盖的东西。

三来就是功耗问题,的确理论上会略大,但也就是略大而已,还是因为7nm这东西太接近理论上限了,额外的东西太多。现在的情况是工艺不成熟,设计不合理等原因才是大头,不是原理。

四是理论上没有亚空间突破的话,这个叠叠乐就是未来,你一层园林再精巧还是比不过高楼大厦。我们需要的是装入更多计算单元,为了这个我们还发展了更强的电力生产更强的散热工具,所有一切条件都是为了这个核心服务的。

编辑:jq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 芯片
    +关注

    关注

    446

    文章

    47753

    浏览量

    409048
  • cpu
    cpu
    +关注

    关注

    68

    文章

    10436

    浏览量

    206523
  • 光源
    +关注

    关注

    3

    文章

    619

    浏览量

    67438
  • 光刻胶
    +关注

    关注

    10

    文章

    281

    浏览量

    29738
  • DUV
    DUV
    +关注

    关注

    1

    文章

    55

    浏览量

    3403

原文标题:干货:14nm + 14nm 如何才能达成“比肩”7nm 性能?

文章出处:【微信号:wc_ysj,微信公众号:旺材芯片】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    2024年全球与中国7nm智能座舱芯片行业总体规模、主要企业国内外市场占有率及排名

    芯片销售价格(2021-2024) 表 14:近三年7nm智能座舱芯片主要企业在中国市场占有率(按销量,2021-2024) 表 15: 2023年7nm智能座舱芯片主要企业在中国市场排名(按销量
    发表于 03-16 14:52

    一文详解芯片的7nm工艺

    芯片的7nm工艺我们经常能听到,但是7nm是否真的意味着芯片的尺寸只有7nm呢?让我们一起来看看吧!
    的头像 发表于 12-07 11:45 2099次阅读
    一文详解芯片的<b class='flag-5'>7nm</b>工艺

    台积电7nm制程降幅约为5%至10%

    据供应链消息透露,台积电计划真正降低其7nm制程的价格,降幅约为5%至10%。这一举措的主要目的是缓解7nm制程产能利用率下滑的压力。
    的头像 发表于 12-01 16:46 541次阅读

    基于高通SDM 450平台所研发出来的XY450核心板性能怎么样?能应用于哪些场景呢?

    采用先进的14nm FinFET工艺,具有较低的有源功耗和更快的峰值CPU性能.
    的头像 发表于 11-18 14:24 588次阅读
    基于高通SDM 450平台所研发出来的XY450核心板<b class='flag-5'>性能</b>怎么样?能应用于哪些场景呢?

    详细解读7nm制程,看半导体巨头如何拼了老命为摩尔定律延寿

    Tick-Tock,是Intel的芯片技术发展的战略模式,在半导体工艺和核心架构这两条道路上交替提升。半导体工艺领域也有类似的形式存在,在14nm/16nm节点之前,半导体工艺在相当长的历史时期里有着“整代”和“半代”的差别。
    的头像 发表于 11-16 11:52 1189次阅读
    详细解读<b class='flag-5'>7nm</b>制程,看半导体巨头如何拼了老命为摩尔定律延寿

    首款国产车规7nm芯片量产上车

    ​首搭国内首款自研车规级7nm量产芯片“龙鹰一号”,魅族车机系统首发上车。
    的头像 发表于 09-14 16:12 522次阅读

    中兴宣布已成功自研7nm芯片,已拥有芯片设计和开发能力

    除了中兴通讯和华为之外,国内还有其他拥有自研芯片设计和开发能力的公司。例如,小米旗下的松果电子于2017年发布了其首款自研芯片澎湃S1。虽然与7nm芯片相比,澎湃S1采用的制造工艺是10nm14nm,但这一成果仍然显示了松果电
    的头像 发表于 08-30 17:11 1w次阅读

    台积电突然接收中企7nm芯片订单

    阿里平头哥的芯片订单今年逐季增长,下半年的订单将会是上半年订单的两倍。消息称,由于7nm芯片订单快速增长,台积电7nm产能的利用率,将会在今年下半年明显改善。
    的头像 发表于 07-18 14:28 1033次阅读

    回顾下功耗的定义及其组成部分并总结降低功耗的常用方案

    随着工艺节点的不断发展(现在普遍是28nm,22nm,16nm,14nm,甚至有的都在做7nm),芯片的
    发表于 06-29 15:24 1918次阅读
    回顾下功耗的定义及其组成部分并总结降低功耗的常用方案

    请问NM1200 UART1可以使用吗?

    NM1200 UART1可以使用吗?官方BSP库文件里面没有P14-RXD和P15-TXD的功能配置 只有对Uart1的一些寄存器配置,数据手册明确指出P14和P15 可以配置为Uart1,
    发表于 06-19 08:05

    求分享NM1200和NM1330详细的数据手册

    跪求新唐NM1200和NM1330详细的数据手册
    发表于 06-15 08:57

    中芯国际下架14nm工艺的原因 中芯国际看好28nm

    的基础上,实现了国内14nm 晶圆芯片零的突破,并在梁孟松等专家的带领下,向着更加先进的芯片制程发起冲锋。 然而,最近在中芯国际的公司官网上,有关于14nm芯片制程的工艺介绍,已经全部下架,这让很多人心存疑惑,作为自家最为先进的
    的头像 发表于 06-06 15:34 1.8w次阅读

    国产第二代“香山”RISC-V 开源处理器计划 6 月流片:基于中芯国际 14nm 工艺,性能超 Arm A76

    月流片,性能超过 2018 年 ARM 发布的 Cortex-A76,主频 2GHz@14nm,SPEC 2006 得分为 20 分。香山用湖来命名每一代架构 —— 第一代架构是雁栖湖,第二代架构
    发表于 06-05 11:51

    Intel 4工艺14代酷睿将升级全新的CPU/GPU架构

    14nm、10nm、4……Intel近几年的制造工艺,每次首秀都不太顺利,频率和性能不达标,只能用于移动版,优化个一两年才能上桌面,然后性能
    发表于 05-24 11:33 1031次阅读
    Intel 4工艺<b class='flag-5'>14</b>代酷睿将升级全新的CPU/GPU架构

    505nm、785nm、808nm、940nm激光二极管TO56 封装、 500mW 100mw

    808nm 激光二极管 TO56封装 500mW XL-808TO56-ZSP-500 、XL-TO18-785-120、XL-9402TO5-ZS-1W、XL-505TO56-ZSP-100
    发表于 05-09 11:23