0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

研究人员设计迄今首个能够发电的整流天线

IEEE电气电子工程师 来源:IEEE电气电子工程师 作者:IEEE电气电子工程师 2021-06-11 15:22 次阅读

在实现实用价值之前,尽管还需要做大量的工作,但一项新的研究发现,世界上最高效的光学矩形天线从余热中获取的能量达到了以前设备的100多倍。

Rectennas是“整流天线”的缩写——接收电磁波就像汽车天线一样。当整流天线接收到信号时,它会产生振荡电荷,通过连接的整流二极管。然后这些整流器将这些波动转化为直流电。

理论上,矩形天线可以从通常会被浪费的热量中获取能量。这项研究的主要作者、科罗拉多大学博尔德分校的电气工程师Amina Belkadi说:“如果这些技术能够帮助应对气候变化,那就太好了。你可以想象把它们加到太阳能电池里,这样你就能从中获得更多的能量。”

此次,研究人员设计了迄今首个能够发电的整流天线。Amina Belkadi表示:“我们首次证明了,在能量收集整流天线中电子发生了共振隧穿。”

现在,Belkadi和她的同事们发现了一种方法,利用一种量子效应,大大提高了光学矩形天线的效率,这种量子效应大致相当于电子穿墙而过。他们在5月18日的《自然通讯(Nature Communications)》杂志上详细介绍了他们的研究结果。

在传统整流天线中,电子必须通过绝缘体才能发电。这些绝缘体给设备增加了很大电阻,减少了可输出电量。而在最新研究中,他们在设备上增加了两个绝缘体,而不是一个。这产生一种叫作量子“阱”的效应。如果电子以恰到好处的能量击中这个阱,就可以利用它穿过两个绝缘体,且在这个过程中不会遇到任何阻力。“如果你选择合适的材料,合适的厚度,就能使电子畅通无阻。” Belkadi说,就像幽灵一般“穿墙而过”。

科学家们测试了25万多个蝴蝶结形状的矩形天线阵列,这些天线由镍、氧化镍、氧化铝、铬和金组成,每个只有11纳米长、6纳米宽。他们发现他们的设备显示出比以前的光学矩形天线高100到1000倍的转换效率。

不过,这些新型矩形天线的转换效率仍然很小,仅为0.001%。“这说明我们还有很长的路要走,”Belkadi说。

“进一步提高光学整流效率的一个潜在方法是用不同的材料进行实验,让更多的电子通过。也许我们可以把转换效率再提高1000倍在1%到2%的转换效率下,考虑到废热损失的巨大能量,如果使用不同的材料或改变绝缘体,让阱更深,就会有更多电子通过,” Belkadi表示。

光整流天线有望给可再生能源领域带来变革,比如收集工厂烟囱或烘焙烤箱发出的热量,一些科学家甚至设想将其安装在地球上空的航天器上,捕获从地球辐射到外太空的能量。

原文标题:新的光学天线从热量中获取的电能是原来的100倍

文章出处:【微信公众号:IEEE电气电子工程师】欢迎添加关注!文章转载请注明出处。

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 天线
    +关注

    关注

    66

    文章

    3034

    浏览量

    139605

原文标题:新的光学天线从热量中获取的电能是原来的100倍

文章出处:【微信号:IEEE_China,微信公众号:IEEE电气电子工程师】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    研究人员发现提高激光加工分辨率的新方法

    通过透明玻璃聚焦定制激光束可以在材料内部形成一个小光斑。东北大学的研究人员研发了一种利用这种小光斑改进激光材料加工、提高加工分辨率的方法。 他们的研究成果发表在《光学通讯》(Optics
    的头像 发表于 04-18 06:30 46次阅读
    <b class='flag-5'>研究人员</b>发现提高激光加工分辨率的新方法

    中国首个高空风能项目成功发电

    日前,由中国能建中电工程和中路股份共同建设,中国能建安徽院总承包,江苏电建一公司承建的安徽绩溪高空风能发电新技术示范项目成功发电,成为我国首个可并网的兆瓦级高空风能发电示范项目。 据中
    的头像 发表于 01-10 18:58 950次阅读

    整流电路中触发电路的作用

    发电路在整流电路中扮演着重要角色,它能够将交流电信号转化为脉冲信号,从而实现对电压或电流的控制和调节。触发电路的作用在于使整流电路
    的头像 发表于 01-04 13:37 267次阅读

    研究人员首次将光子滤波器和调制器组合在单个芯片上

    悉尼大学的研究人员将光子滤波器和调制器组合在单个芯片上,使他们能够精确检测宽带射频频谱上的信号。这项工作使光子芯片更接近有朝一日,有可能取代光纤网络中体积更大、更复杂的电子射频芯片。
    的头像 发表于 01-02 16:30 268次阅读

    研究人员设计一种新的3D喷墨打印技术

    据悉,一只带韧带和肌腱的骨骼机械手现在可以通过一次3D打印完成 —— 这是通过一种新的增材制造方法实现的,这种方法可以同时以高分辨率打印刚性和弹性材料。 这项新工作是瑞士苏黎世联邦理工学院的研究人员
    的头像 发表于 11-20 17:01 375次阅读

    谷歌研究人员利用现有的耳机来测量心率

    谷歌的研究人员还发现,当音乐播放时,超声波方法效果很好,但它在嘈杂的环境中还可能存在问题,“APG信号有时会非常嘈杂,或可受到身体运动的严重干扰。”然而,他们发现,他们可以通过使用多个频率并找出其中最准确的信号来克服运动问题。
    的头像 发表于 11-09 16:32 333次阅读

    研究人员发现了迄今为止最快的半导体

    科学家们发现了他们所说的迄今为止最快、最高效的半导体。尽管这种新材料是用地球上最稀有的元素之一制成,但研究人员表示,有可能会发现由更丰富的材料制成的替代物,其运行速度相当快。
    的头像 发表于 11-08 16:28 342次阅读

    研究人员用锂换钠可减轻锂的财政和环境负担

    中,但到目前为止,还没有一种技术能够取代锂成为主要的选择成分。 现在,亚利桑那州立大学的研究人员提出了一种不同的方法:他们用钠稀释锂,而不是取代锂。钠很容易获得,并且在海水中以氯化钠(盐)的形式存在,有可能减轻锂的财政和环境负担。 该团队
    的头像 发表于 07-25 16:39 618次阅读

    研究人员展示了首个可见波长飞秒光纤激光器

    研究人员已经开发出第一种能够在电磁波谱可见范围内产生飞秒脉冲的光纤激光器。光纤激光器产生超短、明亮的可见波长脉冲,可用于各种生物医学应用以及材料加工等其他领域。
    的头像 发表于 07-08 09:15 522次阅读
    <b class='flag-5'>研究人员</b>展示了<b class='flag-5'>首个</b>可见波长飞秒光纤激光器

    研究人员展示FeverPhone软件,利用手机温度传感器测量人体温度

    传感新品 【华盛顿大学:研究人员展示FeverPhone软件,利用手机温度传感器测量人体温度】 6 月 24 日消息,华盛顿大学的研究人员开发出了一款名为 FeverPhone 的软件,这个软件可以
    的头像 发表于 06-26 08:39 894次阅读
    <b class='flag-5'>研究人员</b>展示FeverPhone软件,利用手机温度传感器测量人体温度

    NVIDIA Cambridge-1 AI 超级计算机通过云让更多研究人员能够访问

    继成功打造 Cambridge-1 之后,NVIDIA 将该超级计算机连入 NVIDIA DGX Cloud,实现更多领域、更广泛的访问。 科学研究人员需要海量计算资源来支持各个领域的研究。无论是
    的头像 发表于 06-19 19:05 294次阅读

    研究人员创造能够与附近设备进行被动无线通信的纳米纹身

    伊斯坦布尔两家机构的研究人员创造了能够与附近设备进行被动无线通信的纳米纹身,而不需要电池等外部电源。这一进步可能会推动许多生物传感技术的发展,到目前为止,这些技术一直因依赖庞大的外部电源或有
    的头像 发表于 06-19 16:38 617次阅读

    研究人员发明一种基于可生物降解藻类的传感器

    大学的研究人员开发了一款性价比高、易于使用、适应性强、舒适的新型电子绷带,能够有效加速伤口愈合,有助于防止糖尿病患者的伤口感染和进一步的并发症。西北大学高级再生工程中心主任Guillermo Ameer表示,它可能在一年至18个月内准备好
    的头像 发表于 05-25 17:40 692次阅读

    昆虫的耳朵激发研究人员打造微型3D打印麦克风的设计灵感

    研究人员表示,昆虫的耳朵激发了研究人员打造微型3D打印麦克风的设计灵感,这种麦克风可以精确定位声音的方向,取代目前用于这种目的所需的体积更大、能量更大的设备。
    的头像 发表于 05-24 10:27 456次阅读

    研究人员开发新型时间晶体,改善激光器并实现6G无线通信

    研究人员开发了一种制造光子时间晶体的方法,并表明这些奇异的人造材料可以放大照射在它们身上的光,有可能产生更好的激光器和下一代无线通信。
    发表于 04-24 10:25 154次阅读