0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

量子物理的基本定律也能绕开 首次规避海森堡测不准原理

ExMh_zhishexues 来源:知社学术圈 作者:知社学术圈 2021-05-24 10:33 次阅读

19世纪末,海森堡首次提出了不确定性原理。在量子物理学中,对于某一个确定的粒子,我们无法同时精确地知道粒子的位置和速度。海森堡曾言:“在因果律的陈述中,即‘若确切地知道现在,就能预见未来’,所错误的并不是结论,而是前提。我们不能知道现在的所有细节,是一种原则性的事情。”

在最近发表在science上的一篇论文中,芬兰阿尔托大学的米卡·西兰帕教授领导的研究小组发现,有一种方法可以规避不确定原理。

研究小组并没有使用基本粒子进行实验,而是使用更大物体——一对振动的铝膜,类似于两个小鼓,每个鼓长约10微米——10微米大概只有头发丝直径的五分之一,但按量子标准来看,它们是如此巨大,每个结构由大约一万亿个原子组成。两个鼓膜震动的相位相反,研究小组用微波光子对膜进行扰动,使它们同步振动,并使其运动处于量子纠缠状态。在任何给定的时间,随着鼓的上下摆动,测量它们在平面上的位移表明它们处于完全相同的位置,并且测量它们的速度时会返回完全相反的值。

米卡·西兰帕教授表示:“两个鼓膜的 振动相 完全相反。”在这种状态下,可以将两个鼓视为一个量子力学实体,那么鼓膜运动状态的不确定性就被消除了。这意味着研究人员能够同时测量两个鼓面的位置和动量—而根据海森堡不确定性原理,这是不可能的。打破不确定性原理使得他们能够表征驱动鼓膜的极弱的力,“一个鼓膜延着相反的方向对另一个鼓膜所施加的所有的力做出反应,就像是有着负的质量”。

这项研究表明大的物体可以处于相对稳定的纠缠态,而纠缠对象不能被认为是相互独立的。处于纠缠状态中的物体,彼此之间可以具有任意大的空间间隔,可以表现出与经典物理学相矛盾的行为。对于同一个就纠缠态,研究人员可以进行多次测量,从而绕开了不确定性原理。也就是说,本实验并没有违反、打破不确定性原理,而是通过反作用规避了不确定性原理。

对于宏观的物体,量子纠缠效应是很难维持稳定的,极易被周围的环境扰动破坏。所以,进行这个实验时温度比绝对零度高0.01℃。研究小组表示他们将继续这项研究,以探索量子力学和引力的相互作用。实验所使用的振动鼓面有可能作为崭新的元器件,用作连接大型分布式量子网络节点的接口

参考文献:

1.Quantum mechanics–free subsystem with mechanical oscillators” by Laure Mercier de Lépinay, Caspar F. Ockeloen-Korppi, Matthew J. Woolley and Mika A. Sillanpää, 7 May 2021, Science.DOI: 10.1126/science.abf5389

编辑:jq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 元器件
    +关注

    关注

    111

    文章

    4524

    浏览量

    88666
  • 量子
    +关注

    关注

    0

    文章

    454

    浏览量

    25224
  • 粒子
    +关注

    关注

    0

    文章

    43

    浏览量

    12588

原文标题:量子物理的基本定律也能绕开?首次规避海森堡测不准原理

文章出处:【微信号:zhishexueshuquan,微信公众号:知社学术圈】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    量子计算机重构未来 | 阅读体验】 跟我一起漫步量子计算

    计算机在加密和密码破解领域具有巨大的潜力。传统的加密算法在量子计算机面前可能不再安全,这将促使我们发展更加安全的加密技术。虽然这带来了挑战,但同时为信息安全领域提供了新的发展机遇。随着量子
    发表于 03-13 19:28

    量子

    当我们谈论量子计算机时,通常是在讨论一种利用量子力学原理进行计算的全新计算机系统。与传统的计算机使用二进制位(0和1)来表示数据不同,量子计算机使用量子比特(qubit)来存储和处理信
    发表于 03-13 18:18

    量子计算机重构未来 | 阅读体验】+ 了解量子叠加原理

    )的状态,由瑞士物理学家费利克斯·布洛赫(Felix Bloch)在1929年提出。布洛赫球是一个单位二维球面 (注意:只是球面而非球体)。 在布洛赫球上,一个单量子比特的状态可以用一个点表示,这个点
    发表于 03-13 17:19

    量子计算机重构未来 | 阅读体验】+量子计算机的原理究竟是什么以及有哪些应用

    计算的基本原理,利用了量子的叠加态的特性。然后量子计算如何实现信息的传递呢,使用了量子纠缠的特性。书中2.1.4章节进行了介绍,书中举得手势的例子比较有意思比较好懂。 通过以上可以
    发表于 03-11 12:50

    量子计算机重构未来 | 阅读体验】第二章关键知识点

    得出结论所需的时间。Grover算法则在非结构化检索上有突出的效率。作者同样提到了量子计算在人工智能的梯度下降以及矩阵求逆运算上,提高效率,但并未深入描述原理。 作者提到了目前量子
    发表于 03-06 23:17

    量子计算机重构未来 | 阅读体验】+ 初识量子计算机

    大语言模型训练会是一个怎样的情景。。。。。。 希望量子计算机尽快走出实验室,能够早日进入寻常百姓家,更希望我国的量子计算机取得突破,蓬勃发展,遥遥领先! 今天先研读至此,后续所读所
    发表于 03-05 17:37

    法拉第电磁感应定律和楞次定律区别是什么

    法拉第电磁感应定律(简称法拉第定律)和楞次定律(简称楞次-法拉第定律)是电磁感应现象的两大基本定律,它们均描述了在磁场变化或电路中的导体运动
    的头像 发表于 02-04 17:01 1145次阅读

    基尔霍夫定律包括哪些定律

    基尔霍夫定律(Kirchhoff’s laws)是电路分析中的重要定律,由德国物理学家戴奥多尔·基尔霍夫于1845年提出。这些定律被广泛应用于电路理论和实践中,被认为是电路分析的基石。
    的头像 发表于 01-10 17:03 577次阅读

    热电偶四大定律及其应用

    。热电偶的原理和应用有四个基本定律,它们是: 第一定律:塔芙特电动势定律或热电压定律。 塔芙特电动势定律指出,在一个闭合电路中,由热电偶引起
    的头像 发表于 12-19 14:03 1438次阅读

    AD7663AST采样器输出不准怎么解决?

    如题,我们公司首次使用AD7663,对照PDF文档编写了串行输出从模式的相关时序,经测试使信号、片选信号、时钟信号均满足芯片设计需求。输入电压我配置的是+-REF档,且输入电压直接接到REF基准
    发表于 12-19 07:18

    量子力学三大定律 量子力学的作用

    由德国物理学家海森堡提出的该原理表明,在量子世界中,无法同时准确测量一粒子的位置和动量。更确切地说,测量一个粒子的位置越准确,其动量就越不确定;反之亦然。这一原理深刻影响了我们对微观世界的理解,突显了量子系统的不可预测性和概率性
    的头像 发表于 07-27 16:13 8122次阅读

    凝聚态物理器件-量子霍尔传感器

    凝聚态物理-量子霍尔传感器,可用于超低温2K和室温300K下。灵敏度800V/AT
    的头像 发表于 07-26 14:34 311次阅读
    凝聚态<b class='flag-5'>物理</b>器件-<b class='flag-5'>量子</b>霍尔传感器

    量子云是什么?量子云平台如何构建?

    现实中,能够构建出量子比特的物理系统有很多种,可以是基于光子、电子、原子、分子、原子核、晶格缺陷等;熟悉一点量子计算的读者可能听说过超导量子计算、离子阱
    发表于 06-27 11:33 3563次阅读
    <b class='flag-5'>量子</b>云是什么?<b class='flag-5'>量子</b>云平台如何构建?

    【被误解的量子通信】#科普 #物理 #Vlog #量子 #涨知识

    量子通信
    jf_97106930
    发布于 :2023年05月21日 10:42:25

    为什么量子纠缠是量子信息的资源?

    随着量子物理以及相关技术的发展,特别是量子力学基本问题的研究,量子信息科学逐步兴起。
    的头像 发表于 05-20 11:39 538次阅读
    为什么<b class='flag-5'>量子</b>纠缠是<b class='flag-5'>量子</b>信息的资源?