0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

解析充电用 Buck 转换器实现 CV/CC 控制的方法

立錡科技 来源:RichtekTechnology 作者:RichtekTechnology 2021-05-17 11:05 次阅读

进入主题之前,先介绍一张原理图及其涉及到的器件,我们的主题也将以其中用到的核心器件的特性为蓝本。如果你要设计带有 USB-C 型接口电子设备,同时需要这个接口能识别各种不同的设备来源并以正确的方式向其供电或对其内部电池进行充电,参考一下这幅图就是很有价值的。

9aaefca2-b4f7-11eb-bf61-12bb97331649.png

图中的核心元件 RTQ2115C 由 C 型 USB 下行端口控制器、充电端口控制器、USB 2.0 高速数据线开关及 36V、3.5A 同步 Buck 转换器共同组成,它可对使用 USB-C 型接口的设备接入事件进行检测并安排对其实施供电操作,完全符合当下的应用发展方向。

当符合 USB 2.0 BC1.2 和信产部 YD/T1591-2009 标准以及采用 Divider3 及 1.2V 模式的设备接入时,它可通过数据线的 D+/D- 对其进行检测并自动判定其遵守的规格,自动安排与其规格相符的供电操作以实现其充电过程,这一特性使其可以和历史上曾经出现过的绝大部分便携式设备兼容,使你的设计具有极其普遍的适应性。 RTQ2115C 内含的同步 Buck 转换器可在 3V~36V 的输入电压范围内工作,最高可以耐受 42V 的电压冲击。其额定工作频率为 2.1MHz,可接受 300kHz~2.2MHz 的外来同步信号控制其工作节奏。

当其以自身时钟作为工作频率的来源时,一个外来的逻辑信号即可控制其进入频谱扩展工作模式,可大大减轻电磁兼容问题的处理难度,这种模式下的工作频率将在 2.1MHz~2.1MHz+6% 的范围内随机跳动。

负载很轻时,其工作模式可选择为 PSM 或 FPWM,可分别满足高效率和高输出电压调整率的应用需求。其输出采用 CC/CV 控制方式,轻载时工作于 CV 模式,重载时进入 CC 模式,非常符合充电应用的需求,同时还能用缆线压降补偿功能对长线传输带来的电压降进行补偿,避免在负载端的电压出现波动现象。

9af0077e-b4f7-11eb-bf61-12bb97331649.png

RTQ2115C 的引脚布置是经过 FMEA 即失效模式及其影响分析的结果,相邻引脚出现短路时具有特别的保护功能可避免出现冒烟、燃烧等严重问题。其封装引脚具有侧面可润湿能力,焊接时流动的焊接材料可以将其侧面也包裹住,可对焊接可靠性的提高带来帮助,同时也方便用光电检测法自动发现焊接问题。 RTQ2115C 实际上是针对车用电子设备的应用需求开发的,已经通过了AEC-Q100 Grade 1 认证,可在 -40℃~125℃ 的环境温度范围内可靠工作。 下面就来谈谈 RTQ2115C 内含 Buck 转换器是如何实现 CC/CV 控制及缆线压降补偿的。

9b2c5058-b4f7-11eb-bf61-12bb97331649.png

这是实现 CC/CV 控制及缆线压降补偿所涉及到的应用电路原理图。 R1 和 R2 构成的输出电压取样电路获得的反馈电压 VFB 被送入电压误差放大器后与参考电压进行比较,其误差经放大处理后转化为一个电流输出对 COMP 端的电压进行调节,所得电压再与一个与时钟信号同步的三角波进行比较得到控制开关动作的 PWM 信号,最后即可得到一个稳定的输出电压,CV 控制就这样完成了。

CC 即恒流控制是在负载电流超过预设的电流限制时用一个可控的电流源对上述控制回路中的 COMP 电压进行强行的限制,使其随着输出电流的上升而变得越来越低,完全不管输出电压的高低。这种行为在负载电流没有超限时是不会发生的,因此和 CV 控制一点也不会有冲突。

在上图所示电路中,RSENSE 就是这样的输出电流取样电阻,CSP/CSN 内部连接的是一个使用 100mV 参考电压为比较对象的误差放大器,其输出在下图中被引入了 Control Logic 部分。

我们可以将其想象为就是和 CV 控制回路的 COMP 节点连接在一起的,但是其作用远比 CV 控制误差放大器的作用更强,能使 CV 控制误差放大器的输出完全不起作用。

9b5119b0-b4f7-11eb-bf61-12bb97331649.png

现在说说缆线压降补偿是如何实现的。当负载电流 IOUT 流过电阻 RSENSE 时会形成一个电压差 VCS = RSENSE x IOUT,此电压差经过内部电路处理后形成一个电流 ILC(µA) = 21 x ( VCS – 0.00476 ),它们两者之间的关系如下图所示:

9bb45048-b4f7-11eb-bf61-12bb97331649.png

此电流经过电压反馈电阻网络上端电阻 R1 处理后会给输出电压加入一个偏移量 VO_OFFSET = ILC x R1 = 21 x ( RSENSE x IOUT – 0.00476 ) x 10-6 x R1,使输出电压会随着负载电流的上升而自动上升,但在负载连接端的电压是基本维持不变的,因为这个偏移量的指标是根据负载线的特性而提出来的。所以,实际的设计过程需要首先给出偏移量指标,然后根据下式计算出 R1 的值:

9bf6dd96-b4f7-11eb-bf61-12bb97331649.png

其中的 IOUT 就是应用中会出现的最大负载电流,RSENSE 则是这个最大负载电流流经电阻 RSENSE 时能产生 100mV 压降的电阻值。 最后再根据空载输出电压值 VOUT、恒压控制的反馈参考电压值 VREF_CV = 0.8V 及刚刚得到的 R1 计算出反馈电阻 R2 的值:

9c1df12e-b4f7-11eb-bf61-12bb97331649.png

RSENSE 在应用中会流过大电流,选择参数时需要考虑其功率耗散能力,具体的计算公式就不在这里涉及了,使用时还必须考虑其富余量以确保安全。 本文涉及到的所有公式在 RTQ2115C 的规格书里均有出现,有问题的读者可以进一步参考之以获取第一手信息,点击文末的阅读原文可快速抵达。

9c3c2b8a-b4f7-11eb-bf61-12bb97331649.png

编辑:jq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电阻
    +关注

    关注

    85

    文章

    5037

    浏览量

    169618
  • PWM
    PWM
    +关注

    关注

    114

    文章

    4897

    浏览量

    209889
  • 电压
    +关注

    关注

    45

    文章

    5081

    浏览量

    114408

原文标题:充电用 Buck 转换器实现 CV/CC 控制的方法

文章出处:【微信号:RichtekTechnology,微信公众号:立錡科技】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    双通道CC/CV模式 同步降压转换器EUP3468A产品手册

    电子发烧友网站提供《双通道CC/CV模式 同步降压转换器EUP3468A产品手册.pdf》资料免费下载
    发表于 01-17 16:26 0次下载

    HE4056E用于单节锂离子电池的完整CC/CV线性充电

    电子发烧友网站提供《HE4056E用于单节锂离子电池的完整CC/CV线性充电器.pdf》资料免费下载
    发表于 12-22 11:27 0次下载

    FR9838DH TDFN-10L 36V,5A,130KHz同步降压DC/DC转换器充电器应用

    概述 FR9838是一个双通道同步降压DC/DC转换器,提供宽的4.5V到36V输入电压范围和5A负载电流能力。为汽车充电器、智能电源条和便携式充电器提供解决方案。FR9838在CV
    发表于 12-20 16:22

    YB2416是一款同步降压型DC-DC转换器芯片

    YB2416D 30V 输入,3A 输出,CC&CV 控制,高效率同步降压转换器 概述: YB2416是一款输入耐压超过40V,在4.5V-30V输入电压条件下正常工作,并且能
    发表于 12-13 11:53

    用ne555控制buck电路

    用ne555控制buck电路  本文旨在详细而全面地了解由NE555定时器控制的降压转换器电路的设计和操作。降压转换器是一种广泛使用的DC-
    的头像 发表于 12-07 16:52 488次阅读

    Buck转换器如何工作

    电路Buck转换器
    油泼辣子
    发布于 :2023年11月18日 11:51:37

    直流电源如何控制CC/CV模式的?

    要求。 直流电源的控制模式中最常见的是CC(恒流)和CV(恒压)模式。在CC模式下,电源输出的电流保持不变,而在CV模式下,电源输出的电压保
    的头像 发表于 11-16 14:15 1226次阅读

    优化DC-DC转换器控制和调制方法

    控制和调制方法。 一、控制方法 DC-DC转换器控制方法
    的头像 发表于 10-23 09:59 699次阅读

    如何利用单片机、buck电路实现恒流充电

    被用来控制恒流充电过程。本文将详细介绍如何利用单片机、buck电路实现恒流充电。 一、单片机实现
    的头像 发表于 09-12 15:26 2681次阅读

    一个非常简单的3.25W CV/CC充电

    pi(π)滤波,以衰减传导差模EMI噪声。 LinkSwitch-II 器件 (U1) 将电源开关器件、振荡CC/CV 控制引擎、启动
    发表于 09-11 17:03

    如何区分非隔离型Buck、Boost和Buck-Boost转换器

    非隔离Buck、Boost和Buck-Boost拓扑在AC-DC电源和非隔离DC-DC转换器设计中有广泛的应用。尽管许多专利早在20世纪70年代就已经申请,但其线路简单,成本低和效率高的特点使他们一直被沿用至今。现在的新产品中也
    的头像 发表于 06-07 18:02 2023次阅读
    如何区分非隔离型<b class='flag-5'>Buck</b>、Boost和<b class='flag-5'>Buck</b>-Boost<b class='flag-5'>转换器</b>

    消除Buck电源转换器中EMI问题的方法

    Buck电源转换器是一种常用的DC-DC转换器,其主要功能是将高电压的直流电源转换为低电压的直流电源。由于其高效率和低成本等优点,Buck
    的头像 发表于 06-04 14:35 2197次阅读

    FS8623B具有A+C独立CV/CC功能,且CC功能具有分段的特点

    FS8623B支持多种快充协议,具有CC/CV功能
    的头像 发表于 05-05 16:11 421次阅读
    FS8623B具有A+C独立<b class='flag-5'>CV</b>/<b class='flag-5'>CC</b>功能,且<b class='flag-5'>CC</b>功能具有分段的特点

    怎样降低Buck转换器的PSM纹波?

    2021 年的时候写过一篇文章——《 PWM 和 PSM 模式的区别 》,它以最高工作电压为 17V 的 ACOT 架构 Buck 转换器 RT6252A/B 为例对 Buck 转换器
    的头像 发表于 05-04 10:57 1391次阅读
    怎样降低<b class='flag-5'>Buck</b><b class='flag-5'>转换器</b>的PSM纹波?