0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

简述图像的测量之投影与纹理

新机器视觉 来源:CSDN技术社区 作者:ReWz 2021-04-26 14:34 次阅读

一、投影

水平投影有什么作用呢?

可以起到一个定位的作用,比如说,我们想要定位车牌号。我们把图像处理之后,用垂直投影,可以很快的对其进行定位以即分割

水平投影的实现步骤

图像二值化,物体为黑,背景为白。

循环各行,依次判断每一列的像素是否为黑,统计所有黑像素的个数。设该行共有M个黑像素,则把该行从第一列到第M列设置为黑

垂直投影的实现步骤

图像二值化,物体为黑,背景为白。

循环各列,依次判断每一行的像素是否为黑,统计所有黑像素的个数。设该列共有M个黑像素,则把该列从第一行到第M行设置为黑

效果图如下

水平投影效果如下

二、纹理分析

什么是纹理呢?

纹理就是指在图像中反复出现的局部模式和他们的排列规则

纹理特征反应了物体本身的属性,有助于将两种不同的物理分开来

通过对图像的纹理分析获得关于景物纹理特征和结构的定景分析描述和解释。这就是图像纹理分析的任务。

纹理是图像的像素灰度级或者颜色的某种变化,反复出现纹理基元和它的排列规则。而且这种变化是空间排列的

纹理是由纹理级元组测而成的

那什么是纹理分析呢?

纹理分析是指通过图像处理技术抽取出纹理特征,获得纹理的定量或者定性描述的处理过程,获得纹理的定量或者定性描述的处理过程,它首先从像素触发,检测出纹理基元,找出纹理基元排列的信息,建立纹理基元的模型,通过纹理分析获取纹理基元的排列信息及分布信息

纹理分析的基础方法

统计方法

1. 空间域:基于统计图像像素灰度级的分布状况,利用直方图

2. 频域:通过傅里叶变换将图像变换到频率域然后抽取相应的象征量

结构方法:用于印刷或者版画样等一类纹理基元及其排列比较规则的图像

直方图统计特征分析法

大体步骤如下

1. 对于一副图像,选择合适的领域大小

2. 对每个像素,计算出其领域中的灰度直方图

3. 比较求出的直方图与已知的各种纹理基元的直方图之间的相似性。

4. 若相似,说明存在已知的纹理基元

如何判断直方图的相似性呢?

均值方差法

求出两个图像直方图的均值和方差,如果两幅图像的均值和方差相差均在阈值之内,则说明两个直方图是相似的。

直方图的均值:所有像素值相加除以像素个数

直方图的方差:每一个颜色减去均值的平方,再乘以颜色的个数再除以总个数。

算法实现起来非常简单

Python

def Texture_1(img1,img2):

def getStatic(img):

static=np.zeros(shape=256,dtype=int)

for y in range(0,len(img)):

for x in range(0,len(img[y])):

c=img[y,x,0]

static[c]=static[c]+1

return static

# 先统计直方图

static1=getStatic(img1)

static2=getStatic(img2)

s1=0

s2=0

#再计算直方图的平均灰度

for i in range(0,256):

s1=s1+static1[i]*i

s2=s2=static2[i]*i

avg1=s1/(len(img1)*len(img1[0]))

avg2 = s2 / (len(img2) * len(img2[0]))

#再计算方差

for c in range(0,256):

t1=(c-avg1)*static1[c]

t2=(c-avg2)*static2[c]

t1=t1/(len(img1)*len(img1[0]))

t2=t2/(len(img2)*len(img2[0]))

return np.abs(t1-t2)

Kolmogorov-Smirnov检测法

对于两幅图像,分别求出其累计直方图,然后取其累计直方图差值的最大值

H(z)=int_{0}^{Z}h(x)dxH(z)=∫0Zh(x)dx

KS=max|H_1(z)-H_2(Z)|KS=max∣H1(z)−H2(Z)∣

然后再求出直方图之间差值的的和值,为SD

SD=sum h_1(z)-h_2(z)SD=∑h1(z)−h2(z)

如果|KS-SD|∣KS−SD∣在阈值之内,则相似

Python

def Texture_2(img1,img2):

#下面是用来求一副图像的直方图

def getStatic(img):

static=np.zeros(shape=256,dtype=int)

for y in range(0,len(img)):

for x in range(0,len(img[y])):

c=img[y,x,0]

static[c]=static[c]+1

return static

#下面的函数是用来求一副图像的累计直方图

def getStatic1(img):

static=np.zeros(shape=256,dtype=int)

for y in range(0,len(img)):

for x in range(0,len(img[y])):

c=img[y,x,0]

static[c]=static[c]+1

if c》0:

static[c]=static[c]+static[c-1]

return static

static1=getStatic(img1)

static2=getStatic(img2)

# 用来参数KS

KS=np.max(static1-static2)

# 用来求参数SD

SD=np.sum((getStatic(img1)-getStatic(img2)),axis=0)

return np.abs(KS-SD)

边缘方向直方图分析法

灰度级直方图不能反应图像的二维灰度变化,图像边缘包含有大量的二维信息,取沿着边缘走向的像素的领域,分析其直方图,若在直方图上的某一个灰度范围内有尖峰,可以说明在这个范围内,纹理具有方向性。因此,单纯的分析边缘方向的直方图可以得到一些纹理信息

图像自相关函数分析法

P(x,y)=frac{sum_{i=0}sum_{j=0}f(i,j)f(i+x,j+y)}{sum_{i=0}sum_{j=0} f(i,j)} d=(x^2+y^2)^{frac{1}{2}}P(x,y)=∑i=0∑j=0f(i,j)∑i=0∑j=0f(i,j)f(i+x,j+y)d=(x2+y2)21利用p(x,y)随着x,y大小而变化的规律可以找到描述图像的纹理特征。

自相关函数随着x、y大小而变化,与图像纹理粗细的变化有者对应的关系,如果纹理比较粗,则P(x,y)随着d增加而下降速度较慢,如果纹理比较细,则随着d增加而下降速度较快

灰度共生矩阵特征分析法

因为灰度级直方图分析法无法反应出像素之间灰度级空间相关性的规律。所以是有一定缺陷的,而灰度共生矩阵特征分析法,很好点的解决了这个问题。

相邻某一间隔的两个像素,他们之间要么具有相同的灰度级,要么具有不相同的灰度级,如果能找到这样两个像素的联合分布的统计形式,对于图像的纹理分析很有意义

灰度-梯度共生矩阵分析法

将其灰度进行正规化处理

利用梯度算子,可以得到梯度图像

经过正规化处理,可以得到两个正规化矩阵:灰度矩阵、梯度矩阵

正规化处理

每个像素乘以它的灰度值的个数,然后除以最大值

编辑:jq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 投影
    +关注

    关注

    0

    文章

    135

    浏览量

    24562
  • 函数
    +关注

    关注

    3

    文章

    3866

    浏览量

    61308
  • 纹理
    +关注

    关注

    0

    文章

    7

    浏览量

    6708
收藏 人收藏

    评论

    相关推荐

    投影融合系统:技术解析与未来展望

    式的视觉体验。 投影融合系统的技术原理主要包括投影技术和图像融合技术。投影技术是通过投影仪将图像
    的头像 发表于 02-01 14:50 210次阅读

    基于激光的3D三角测量系统中激光线参数设置

    在基于激光的三角测量系统中,将一条狭窄的光带投影到3D表面,在非投影器的观察视角将会看到一条呈现扭曲的光线 (图1)。分析这些光线图像的形状,其结果可被用来进行物体表面形状的精确几何重
    发表于 10-27 10:05 214次阅读
    基于激光的3D三角<b class='flag-5'>测量</b>系统中激光线参数设置

    机器视觉之图像增强和图像处理

    对原始获取图像进行一系列的运算处理,称为图像处理。图像处理是机器视觉技术的方法基础,包括图像增强、边缘提取、图像分割、形态学处理、
    发表于 10-23 10:43 227次阅读
    机器视觉之<b class='flag-5'>图像</b>增强和<b class='flag-5'>图像</b>处理

    机器视觉:图像处理技术、图像增强技术

    对原始获取图像进行一系列的运算处理,称为图像处理。图像处理是机器视觉技术的方法基础,包括图像增强、边缘提取、图像分割、形态学处理、
    发表于 10-20 10:17 371次阅读
    机器视觉:<b class='flag-5'>图像</b>处理技术、<b class='flag-5'>图像</b>增强技术

    图像尺寸测量仪:解析适用零部件与应用领域

    图像尺寸测量仪也叫一键测量仪器,全自动闪测仪等,是一种精密二次元测量仪器。它能够精确测量各种零部件的形状和尺寸,核心优势在于
    发表于 09-11 16:44

    虚幻引擎的纹理最佳实践

    纹理是游戏不可或缺的一部分。 这是一个艺术家可以直接控制的领域,以提高游戏的性能。 本最佳实践指南介绍了几种纹理优化,这些优化可以帮助您的游戏运行得更流畅、看起来更好。 最佳实践系列指南的总体目标
    发表于 08-28 06:39

    基于特征点的SfM在弱纹理场景下的表现

    SfM是指给定一组无序图像,恢复出相机位姿以及场景点云。通用场景下的SfM效果已经很好,而且COLMAP这类框架也很好用。但是弱纹理和无纹理场景下的SfM却很麻烦,主要目前主流的SfM框架都是先提
    的头像 发表于 08-21 09:22 1223次阅读
    基于特征点的SfM在弱<b class='flag-5'>纹理</b>场景下的表现

    自适应可伸缩纹理压缩开发人员指南

    自适应可伸缩纹理压缩(ASTC)是由Arm®和AMD开发的一种先进的有损纹理压缩技术。 本指南提供了有关如何有效使用ASTC来优化应用程序性能的信息。它涵盖以下主题: •什么是ASTC,为什么需要它
    发表于 08-10 07:58

    实时3D艺术最佳实践-纹理技术解读

    纹理贴图获取2D曲面图像并将其映射到3D多边形上。 本指南涵盖了几种纹理优化,可以帮助您的游戏运行得更流畅、看起来更好。 在本指南的最后,您可以检查您的知识。您将了解有关主题,包括纹理
    发表于 08-02 06:12

    自动环绕相机校准在自动驾驶汽车道路的应用

    了如何基于相机投影模型生成BEV图像,并从中提取纹理,然后将纹理像素投影回原始点云,并使用损失优化方法。
    发表于 07-26 10:08 184次阅读
    自动环绕相机校准在自动驾驶汽车道路的应用

    618投影仪怎么挑,大眼橙X6值得购入!

    不踩雷!投影仪无非就是那几个核心参数是最重要的,其他的一些可以当做加分项,但首要看的还是这几个核心项。 一、亮度亮度越高,投射到屏幕上的相同尺寸的图像越明亮,图像也就越清晰,投影效果就
    的头像 发表于 05-24 13:48 153次阅读
    618<b class='flag-5'>投影</b>仪怎么挑,大眼橙X6值得购入!

    618投影仪怎么挑,大眼橙X6值得购入!

    不踩雷!投影仪无非就是那几个核心参数是最重要的,其他的一些可以当做加分项,但首要看的还是这几个核心项。 一、亮度亮度越高,投射到屏幕上的相同尺寸的图像越明亮,图像也就越清晰,投影效果就
    的头像 发表于 05-24 10:54 201次阅读
    618<b class='flag-5'>投影</b>仪怎么挑,大眼橙X6值得购入!

    IMAGE3图像尺寸测量仪应用之刀具检测

    普密斯IMAGE3系列图像尺寸测量仪将高分辨率双远心镜头与智能化图像处理技术相结合,并融入一键闪测原理,测量简单快捷,精度达到微米级,完全满足数控刀具制造商对批量尺寸
    发表于 05-09 16:18 257次阅读
    IMAGE3<b class='flag-5'>图像</b>尺寸<b class='flag-5'>测量</b>仪应用之刀具检测

    图像测量仪应用之手表表盖尺寸测量

    使用普密斯IMAGE3图像尺寸测量仪,一键闪测,5秒钟左右完成手表表盖全尺寸测量
    的头像 发表于 05-08 15:47 409次阅读
    <b class='flag-5'>图像</b><b class='flag-5'>测量</b>仪应用之手表表盖尺寸<b class='flag-5'>测量</b>

    IMAGE3图像测量仪应用|半导体硅片尺寸检测#产品方案 #闪测仪##半导体#

    图像测量
    普密斯光学
    发布于 :2023年04月28日 11:12:47