0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

深度解读锂电池过充机理及防过充措施

锂电联盟会长 来源:先进电池之家 作者:先进电池之家 2021-04-25 13:52 次阅读

过充是目前锂电池安全测试中较难通过的一项,因此有必要了解过充机理及目前防过充的措施。

图1是NCM+LMO/Gr体系电池过充时的电压和温度曲线。在5.4V电压达到最大,随后电压下降,最终引发热失控。三元电池过充的电压和温度曲线与其十分相似。

0d6ca970-a584-11eb-aece-12bb97331649.jpg

图1

锂电池过充时会产生热量和气体,热量包括欧姆热和副反应产生的热,其中欧姆热占主要。过充引发的电池副反应,首先是过量的锂嵌入负极,在负极表面会生长锂枝晶(N/P比会影响锂枝晶生长的起始SOC)。

其次是过量的锂从正极脱出,引起正极结构坍塌,放出热量和释放出氧。氧气会加速电解液的分解,电池内压不断升高,一定程度后安全阀开启。活性物质和空气的接触会进一步产生更多的热量。

有研究表明减少电解液量会显著减少过充时的产热和产气。另有研究过充时电池不带夹板或安全阀不能正常开启,电池易发生爆炸。

轻微地过充不会导致热失控,但会引起容量衰减。研究发现NCM/LMO混合材料为正极的电池过充时,SOC低于120%容量没有明显的衰减,SOC高于130%时容量会衰减显著。

目前解决过充问题的方法大致有一下几种:

1)BMS中设置保护电压,通常保护电压要低于过充时的峰值电压;

2)通过材料改性(如材料包覆)提高电池的抗过充能力;

3)在电解液中添加抗过充添加剂,如氧化还原对;

4)电压敏感膜的使用,电池发生过充时,膜电阻显著降低,起到分流作用;

5)在方形铝壳电池中使用OSD、CID设计,目前是通用的防过充设计。而软包电池则无法实现类似设计

本次介绍一下钴酸锂电池在过充时电压和温度的变化。下图是钴酸锂电池的过充电压和温度曲线,横轴是脱锂量。负极是石墨,电解液溶剂是EC/DMC。电池容量为1.5Ah。充电电流是1.5A,温度是电池内部温度。

0d7c505a-a584-11eb-aece-12bb97331649.png

锂电池过充大致可分为4个区域,每个区域的特征如下:

I区

1.电池电压缓慢上升。钴酸锂正极脱锂超过60%,在负极侧析出金属锂。

2.电池鼓胀,可能是由于电解液在正极侧高压氧化。

3.温度基本稳定,略有上升。

II区

1.温度开始缓慢升高。

2.在80~95%范围内,正极阻抗增大,电池内阻增加,但在95%有所减小。

3.电池电压超过5V,达到最高。

III区

1. 大约在95%,电池温度开始快速升高。

2. 从大约95%开始,直到接近100%,电池电压稍稍下降。

3. 当电池内部温度达到大约100℃,电池电压急剧下降,可能是温度升高致电池内阻降低所引起的。

IV区

1. 电池内部温度高于135℃,PE隔膜开始融化,电池内阻快速升高,电压达到上限(~12V),电流降至一个较低的值。

2. 在10-12V之间,电池电压不稳定,电流也有波动。

3. 电池内部温度快速升高,电池破裂前温度上升到190-220℃。

4. 电池破裂。

三元电池过充与钴酸锂电池相似,目前市场上的三元方形铝壳电池过充时,大致控制在进入III区时OSD或CID启动,切断电流,保护电池不再过充。

参考文献

Journal of The Electrochemical Society, 148 (8) A838-A844 (2001)

锂电池过充机理及防过充措施(三)

本文通过实验和仿真研究了一款正极为NCM111+LMO的40Ah软包电池的过充性能,过充电流分别为0.33C、0.5C和1C。电池尺寸为 240mm * 150mm * 14mm。(按照额定电压3.65V计算,其体积比能量约290Wh/L,比能量还是比较低的)

过充过程中的电压、温度和内阻变化见图1。可以大致分为四个阶段:

第一阶段:1《SOC《1.2,电池内部没有发生明显的副反应,电池温度和内阻变化较小。

第二阶段:1.2《SOC《1.4,正极中的Mn发生溶解,在正极侧电解液氧化,在负极表面金属锂析出。金属锂与溶剂反应使SEI膜变厚,电池阻抗增加,电池温度开始缓慢上升。

第三阶段:1.4《SOC《1.6,电池温度上升加快,电池鼓胀明显,正极侧电解液氧化加速,放出大量的热和气体。负极表面金属锂继续析出,SEI膜开始分解,锂化的石墨与电解液发生反应。由于正极材料结构的变化,电池电压达到峰值5.2V后略微下降。

第四阶段:SOC》1.6,电池内压超限,壳体发生破裂,隔膜收缩变形,电池热失控。电池内部发生短路,大量能量迅速释放,电池温度急剧上升至780℃。

0d9a2e7c-a584-11eb-aece-12bb97331649.jpg

图1

过充中各阶段的副反应示意图见图2。

o4YBAGCFBUeAWQCUAAffDFaMHZM515.png

图2

过充过程中的产热包括:可逆熵变热、焦耳热、化学反应热和内短路释放出来的热。其中化学反应热包括Mn溶解、金属锂与电解液反应、电解液氧化、SEI膜分解、负极分解和正极(NCM111和LMO)分解释放出的热。表1是各反应的焓变和激活能。(本文忽略了粘结剂的副反应)表1

0ddad08a-a584-11eb-aece-12bb97331649.jpg

图3是不同充电电流过充时的产热率比较。

从图3可以得出以下结论:

1)随着充电电流的增加,热失控时间提前。

2)过充中的产热以焦耳热为主。SOC《1.2,总产热基本等于焦耳热。

3)在第二阶段(1《SOC《1.2),Mn溶解、金属锂与电解液反应、电解液氧化三类副反应先后开始反应。电流1C时,反应会提前。

4)SOC》1.45,金属锂与电解液反应释放出的热会超过焦耳热。

5)SOC》1.6,SEI膜和负极分解反应开始,电解液氧化反应产热率急剧增加,总产热率达到峰值。(文献中4、5描述与图有些不符,这里以图为准,做了调整。)

6)过充过程中,金属锂与电解液反应和电解液氧化是主要的反应。

0de64758-a584-11eb-aece-12bb97331649.jpg

图3

通过上述分析,电解液氧化电位、负极容量和热失控起始温度是过充的三个关键参数。图4是三个关键参数对过充性能的影响。可以看出电解液氧化电位的提高能大大提高电池的过充性能,而负极容量对过充性能影响不大。(换言之,高压电解液有助于提高电池过充性能,增大N/P比对电池过充性能影响不大。)

111df1aa-a584-11eb-aece-12bb97331649.jpg

图4

感兴趣的可以进一步阅读文献。

参考文献

D. Ren et al. Journal of Power Sources 364(2017) 328-340

编辑:jq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 锂电池
    +关注

    关注

    256

    文章

    7665

    浏览量

    163353
  • 电解液
    +关注

    关注

    10

    文章

    786

    浏览量

    22710
  • 负极
    +关注

    关注

    0

    文章

    55

    浏览量

    9381

原文标题:锂电池过充机理及防过充措施

文章出处:【微信号:Recycle-Li-Battery,微信公众号:锂电联盟会长】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    锂电池供电电路保护方案

    ,芯片将会维持一个恒定的充电电压,直到充电电流下降到一个较低的水平。 保护: 电池充电管理芯片具有内置的保护功能,当
    发表于 04-16 03:07

    PL7304升压型双节锂电池充电控制芯片,高效充电管理IC

    1.正品PL7304锂电池充电集成电路,3.0V-6.5V宽电压范围适用 2.PL7304 PFM升压锂电池充电板,双节电池智能充电解决方案 3.PL7304锂电池充电模块,恒流恒压充
    发表于 04-02 14:45

    PL7304升压型双节锂电池充电控制芯片,

    1.正品PL7304锂电池充电集成电路,3.0V-6.5V宽电压范围适用 2.PL7304 PFM升压锂电池充电板,双节电池智能充电解决方案 3.PL7304锂电池充电模块,恒流恒压
    发表于 04-02 14:20

    锂电池单体、锂电池组和锂电池包的区别

    锂电池单体、锂电池组和锂电池包的区别  锂电池是一种常见的可充电电池,由于其高能量密度、轻量化和环境友好等优势,被广泛应用于移动设备、电动汽
    的头像 发表于 01-11 14:09 851次阅读

    锂电池过度保护原理 锂电池保护板为什么能保护锂电池

    锂电池过度保护原理 锂电池保护板的工作原理 锂电池保护板为什么能保护锂电池锂电池是一种高能量密度、长寿命和环保的
    的头像 发表于 01-10 14:53 563次阅读

    什么是锂电池分容?锂电池分容有什么作用?

    什么是锂电池分容?锂电池分容有什么作用? 锂电池分容是指将相同型号的锂电池按照电压和容量进行分类的过程。它的作用是为了确保锂电池在实际使用中
    的头像 发表于 01-10 11:42 1401次阅读

    YB4156/7/4A是一款锂电池充电管理芯片

    耐压高至8V ■充满电压4.2V±50mV ■内置倒灌,输入不在时仅从电池消耗1A ■涓流、恒流和恒压充电自动切换,符合锂电池安全充电规范 ■集成电池未连接检测,未连接时两个指示灯交
    发表于 12-29 11:05

    钴酸锂电池和三元锂电池对比 钴酸锂电池和三元锂电池哪个好?

    钴酸锂电池和三元锂电池对比 钴酸锂电池和三元锂电池哪个好? 钴酸锂电池和三元锂电池是目前市面上常
    的头像 发表于 11-21 16:05 3025次阅读

    PL7152 双节可充电锂电池保护电路 普蓝代理商

    概述 PL7152 是一款基于 CMOS 的双节可充电锂电池保护电路,它集高精度过电压充电保护、过电压放电保护、过电流充电保护、过电流放电保护、电池短路保护等性能于一身。 正常状态下,PL7152
    发表于 11-06 13:55

    SM5102 是一款锂电池充放电管理专用芯片.

    SM51023.7V 锂电池转干电池放管理芯片 简介: SM5102 是一款锂电池充放电管理专用芯片。充电工作时, 可以为 3.7V 锂电池
    发表于 11-06 11:10

    如何选择高质量双节串联锂电池充电管理芯片--我们推荐YB4028

    YB4028系列 具有电池反接功能 双节电池1A电流线性充电芯片 概述: YB4028 是一款双节串联锂电池充电管理芯片,集成涓流、恒流、恒压三段式线性充电管理,符合
    发表于 09-25 17:09

    PL7152 双节可充电锂电池保护电路

    概述 PL7152 是一款基于 CMOS 的双节可充电锂电池保护电路,它集高精度过电压充电保护、过电压放电保护、过电流充电保护、过电流放电保护、电池短路保护等性能于一身。 正常状态下,PL7152
    发表于 09-23 11:54

    单节4.2V两节8.4V三节12.6V四节16.8V串联锂电池充电管理芯片IC,USB快和24V

    。预充电和恒流充电的充电电流可调。FS4064在恒流和恒压充电期间由温度监视器监控。有两个LED指示充电模式。FS4064有SOP-8L包装。 FS5175AE在20V输入3节12.6V锂电池电流可以
    发表于 09-01 15:34

    求单节锂电池充电解决方案

    求一种单节锂电池(>=2A)+电源路径管理的方案,最好是TI的,外围器件尽量少,求大神指点一二
    发表于 06-13 00:46

    定制锂电池组需要注意哪些细节?锂电池组定制的电池选型

    锂电池组定制需要注意很多细节,包括电池的选型、电路设计、安全措施电池组的布局、连接方式等。在定制过程中,需要细心严谨,在锂电池组定制过程中
    的头像 发表于 04-28 16:06 665次阅读
    定制<b class='flag-5'>锂电池</b>组需要注意哪些细节?<b class='flag-5'>锂电池</b>组定制的<b class='flag-5'>电池</b>选型