0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

5G的高频段是如何影响信号完整性的?

电子工程师 来源:EETOP 作者:EETOP 2021-04-08 14:42 次阅读

5G的工作频率将比4G高得多,从而迫使PCB设计人员重新考虑其板的设计和制造方式。

随着5G的到来,电气工程师必须重新考虑(有时是重新设计)他们的PCB和其他基础设施,以支持新频谱的高频率。信号完整性将成为5G PCB板设计中的首要问题。

6373777324402624502838417.jpg

5G在电磁频谱上的位置

在本文中,让我们看一下更高频率对PCB信号完整性的影响以及缓解这些问题的方法。

为什么5G频率对信号完整性不利?

在电路板设计中,频率的增加会对信号完整性产生许多不良影响--特别是增加噪声和衰减的影响。

噪声

关于噪声,首先要考虑的是,随着系统频率的增加,信号反射变得越来越重要。根据传输线理论,反射与传输线长度与信号波长之比直接相关。

信号反射

我们还知道,信号波长随着频率的增加而减小(λ= v / f)。因此,随着5G引入更高的频率,设计人员还必须考虑信号反射的影响,例如振铃或其他失真,这会在系统中引起更多噪声并有效降低SNR。

电容和电感耦合

此外,由于电容和电感分别与电压和电流的变化率相关,因此电容耦合和电感耦合的影响变得更加相关 。这也会产生噪声和失真,从而降低SNR。

衰减与集肤效应

关于衰减,一个重要的考虑因素是所谓的集肤效应。实质上表明,随着信号频率的增加,信号在导体内的穿透深度会减小。

集肤效应

集肤效应的重要含义是,随着较高的频率穿过较小的区域,它们会遇到更大的阻力并引起更大的IR损耗。这种损耗也会降低SNR。

在5G设计中提高SNR的方法

在高速设计中,有许多因素会影响信号的完整性。那么,5G PCB板的设计者可以做什么呢?

控制电路板阻抗

减轻信号反射和衰减的重要步骤是控制电路板阻抗。拥有适当端接的线路和精心设计的阻抗匹配网络对于防止信号反射并为电路模块提供最大功率至关重要。

专注于制造中的阻抗:mSAP

制造电路板时也可以解决阻抗控制问题。传统的PCB制造工艺具有创建具有梯形横截面的走线的缺点。这些横截面会改变走线本身的阻抗,从而严重限制了5G应用。

一种解决方案是使用mSAP(半添加制造过程)技术,该技术可使制造商以更高的精度创建走线。控制线路的几何形状还可以帮助减轻集肤效应和由于它引起的信号功率损失。

减法与mSAP流程。图片由Proto-Electronics提供

放置元件和走线

在减轻诸如耦合之类的影响时,最重要的事情就是明智地将组件和走线相对于彼此并接地。例如,具有埋入接地层和电源平面的多层PCB可能是有用的解决方案。

将敏感线放置在接地平面附近会强制与地(与其他线相反)进行电容性耦合,并为高速信号提供低电感返回路径。

5G设计的更多注意事项

尽管本文未解决所有问题或解决方案的详尽列表,但我们回顾了5G频率在信号完整性方面的一些高级问题以及解决这些问题的可能的设计解决方案。

显然,5G将给PCB工程师带来信号完整性挑战,因为噪声和衰减的频率相关效应都会降低SNR。对于成功的5G设计,本文中未考虑的一些因素(例如电介质和基板材料的选择)同样重要。

编辑:jq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • pcb
    pcb
    +关注

    关注

    4219

    文章

    22466

    浏览量

    385617
  • 5G
    5G
    +关注

    关注

    1340

    文章

    47800

    浏览量

    554110
收藏 人收藏

    评论

    相关推荐

    构建系统思维:信号完整性,看这一篇就够了!

    信号完整性(Signal Integrity,SI)在电子工程领域中具有极其重要的意义,也是现代电子设计的核心考量因素之一,尤其在高速PCB设计、集成电路设计、通信系统设计等领域,对保证系统性
    发表于 03-05 17:16

    要画好PCB,先学好信号完整性

    要画好PCB,先学好信号完整性! 在电子设计领域,高性能设计有其独特挑战。 1 高速设计的诞生 近些年,日益增多的高频信号设计与稳步增加的电子系统性能紧密相连。 随着系统性能的提高,PCB设计
    发表于 02-19 08:57

    5G 外置天线

    5G外置天线 新品介绍 5G圆顶天线和Whip天线旨在提供617 MHz至6000 MHz的宽带无缝高速互联网接入连接解决方案。这些天线的特点是高增益,即使在具有挑战的环境中也能确保强大的
    发表于 01-02 11:58

    在高速设计中,如何解决信号完整性问题?

    在高速设计中,如何解决信号完整性问题? 在高速设计中,信号完整性问题是一个至关重要的考虑因素。它涉及信号在整个设计系统中的传输、接收和响应
    的头像 发表于 11-24 14:32 272次阅读

    信号完整性分析在高频信号中,在图像处理中有何应用?s参数如何确定其最佳标准?

    信号完整性分析在高频信号中,在图像处理中有何应用,s参数如何确定其最佳标准。
    发表于 10-18 07:32

    信号完整性分析

    就变得重要了,通常将这种情况称为高频领域或高速领域。这些术语意味着在那些互连线对信号不再透明的产品或系统中,如果不小心就会出现一种或多种信号完整性问题。 从广义上讲,
    发表于 09-28 08:18

    什么是信号完整性?什么情况下要考虑信号完整性

    信号完整性是指在规定的时间内,信号从源端传输到接收端,信号不失真(能判断出信号的高低电平)。
    的头像 发表于 09-21 16:30 1467次阅读
    什么是<b class='flag-5'>信号</b><b class='flag-5'>完整性</b>?什么情况下要考虑<b class='flag-5'>信号</b><b class='flag-5'>完整性</b>?

    信号完整性设计测试入门

    信号完整性设计,在PCB设计过程中备受重视。目前信号完整性的测试方法较多,从大的方向有频域测试、时域测试、其它测试3类方法。
    的头像 发表于 09-21 15:43 901次阅读
    <b class='flag-5'>信号</b><b class='flag-5'>完整性</b>设计测试入门

    pcb信号完整性详解

    pcb信号完整性详解 随着电子领域技术日新月异的发展,高速电路已经成为了电路设计的重要领域之一。在高速电路中,信号完整性显得尤为重要。在设计PCB电路时,
    的头像 发表于 09-08 11:46 1018次阅读

    信号完整性分析科普

    何为信号完整性的分析信号完整性包含:波形完整性(Waveformintegrity)时序完整性
    的头像 发表于 08-17 09:29 3347次阅读
    <b class='flag-5'>信号</b><b class='flag-5'>完整性</b>分析科普

    什么是信号完整性

    业界经常流行这么一句话:“有两种设计师,一种是已经遇到了信号完整性问题,另一种是即将遇到信号完整性问题”。固态硬盘作为一种高集成度的高时钟频率的硬件设备,
    的头像 发表于 06-27 10:43 1278次阅读
    什么是<b class='flag-5'>信号</b><b class='flag-5'>完整性</b>?

    5G NR RRC协议解析_RRC重配置

    :   integrityProtAlgorithm:完整性保护算法   keyToUse:表示该承载是否使用主密钥KgNB或辅助密钥S-KgNB来获取加密和或完整性保护密钥。(这些和安全性相关的参数
    发表于 05-10 15:44

    5G NR RRC初始AS安全激活协议解析

    :   SecurityModeComplete   SecurityModeComplete消息用于确认安全模式命令的成功完成。发送此消息,加密将被启用。请注意,该消息是受完整性保护的。   SecurityModeFailure   安全模式建立失败,则发送该消息。消息内容,如图所示: 原作者:Ms
    发表于 05-10 15:38

    5G天线和4g天线能通用吗?有何区别?

    。   5G天线频段更长,无线传输速度更快,抗干扰能力更强。其传输速度虽快,但传输距离有限,穿透力较弱。这两种天线各有千秋,我们选择合适自己的就好啦!   5G频段的宽信道宽度,
    发表于 05-09 14:26

    5G毫米波有哪些优势?

    个关键的提升就是能够利用更多的频谱资源来满足不同种类的业务需求,其中就包括使用毫米波的频段资源来实现极高带宽和极低时延。   随着业务对带宽需求的不断增加,通信频谱不断向更高频谱延伸,5G毫米波具有
    发表于 05-05 10:49