0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于DE2开发板和NiosII处理器实现H.264编码器的设计

电子设计 来源:单片机与嵌入式系统应用 作者:杨超,张玲,何伟 2021-03-16 14:12 次阅读

引言

H.264标准作为新一代视频编码标准,是面向多比特率的视频编码标准,也称JVT/AVC标准,既可用于高码率的HDTV和数字存储系统,也可用于低码率的实时通信系统。在相同的图像质量情况下,H.264比H.263和MPEG一4可以节省20%~50%的码率。就其基本档次而言,编码器的复杂度是 H.263的10倍左右。H.264良好的网络亲和性和优异的压缩性能使其成为视频应用的首选,但其巨大的运算量成为许多应用的瓶颈。基于 NiosII设计了一种低码率实时应用的编码系统。该系统充分利用FPGA的并行设计结构,对视频数据采用高压缩比的H.264标准编码,能很好地满足低码率实时编码的要求。

1 H.264编码系统结构设计

根据H.264/AVC编码器原理及结构,同时考虑到现有硬件资源的限制以及该设计的应用需求,设计了图1所示的H.264/AVC编码系统结构。

基于DE2开发板和NiosII处理器实现H.264编码器的设计

摄像头摄入的视频图像首先经过视频采集模块处理,并将当前帧的图像数据存入SRAM。然后,以宏块MB(macroblock)为单元,从SRAM中读取原始图像,并根据MB所在图像帧内的位置,读取重建帧中的参考像素进行帧内预测,并将预测宏块与当前宏块像素做差即可得到预测残差。接下来,对残差图像进行整数DCT变换或Had—amard变换,并对变换输出进行量化。量化输出的残差图像一方面通过反变换和反量化处理生成重建图像供帧内预测作为参考,另一方面经过重排序、熵编码处理得到最终的图像压缩码流输出。

根据H.264/AVC标准,将所设计的整个编码系统从结构上划分为图像采集、帧内预测、变换量化、熵编码等几个主要部分。各个模块之间通过流水线的方式进行处理,可以有效地提高硬件的执行效率。

2 基于Cyclone II FPGA的H.264编码器的实现

系统采用SOPC的设计方式,主要由视频采集模块、NiosII处理器系统组成。采用Altera公司的DE2开发板为开发平台,将视频采集、 NiosII处理器集成到一个SOPC系统中。其中NiosII处理器系统要承担图像采集控制、图像的H.264压缩编码工作。为了保证实时性,在充分分析H.264软件算法运行时间后,采用自定义模块对H.264编码器关键算法进行硬件加速。

2.1 视频采集模块

视频采集是视频图像处理、传输的前提,采集到的数字视频图像好坏将直接影响到视频处理的结果。图2给出了图像处理系统的视频采集结构。

ADI公司的多制式视频解码芯片ADV7181B对采集的视频图像进行模数转换。ADV7181B可以自动检测诸如NTSC、PAL和SEC0M制式的基带视频信号,并将其转换为基于4:2:2取样的16/8位兼容的CCIR601/CCIR656格式的数字视频信号;具有6路模拟视频输入端口,且采用单一的27 MHz晶振时钟输入;用户可以通过两线的I2C接口对ADV7181B的工作模式进行配置。

系统上电时,首先使用I2C模块对ADV7181B的内部寄存器进行配置。由于摄像头输出的是PAL制式的模拟视频信号,因此需要相应地将 ADV7181B配置为PAL制式的模拟视频信号输入,并将其转换为CCIR656格式的数字视频信号。ADV7181B将转换得到的实时数字视频图像的亮度信号、色度信号(TD_DAT)以及行、场同步信号(TD_HS/VS)同时输入到FPGA芯片中,通过图像采集模块提取需要的数字图像信息,并将其转存至AlteraDE2开发板提供的具有512 KB存储容量的SRAM中,用于缓存待处理图像帧。

下面介绍图像采集模块的设计与实现方法。

根据上面对视频采集部分硬件结构的分析,设计了图3所示的视频采集模块结构框图。可以看出,图像采集模块主要包含图像提取、色度取样率变换、 Y/Cb/Cr图像分量分离以及图像缓存SRAM读写控制等单元。

其中图像提取子模块在H.264/AVC编码模块的视频采集控制信息的控制下,从ADV7181B转换输出的PAL制数字视频图像中提取需要的图像数据。摄像头采集的实际图像大小为768×576像素的隔行扫描视频输入信号,其中基数场和偶数场在时间上先后输入。由于系统处理的图像大小为320×240像素,因此需要对输入的数字视频进行截取,以满足系统的处理要求。

考虑到在一帧图像中的顶场与底场数据差异不大,因此在对图像进行截取时,仅对底场中间240行的连续320个相邻像素点进行提取,以输出320×240像素的视频图像数据。其具体提取流程如图4所示。

H.264/AVC支持对色度取样为4:2:O格式的逐行或隔行扫描数字图像进行处理,因此需要对提取的数字图像进行色度取样率变换。通过对相邻奇数行和偶数行的色度图像分量进行简单的平均,可实现由4:4:4向4:2:O的色度取样率变换,如图5所示。

经过取样率变换后的图像数据需要根据Y/Cb/Cr图像类型在SRAM中分片区缓存,以方便后续的H_264的编码处理。图6给出了实际图像的色度分量在取样率变换前后的效果。

2.2 H.264编码器核心模块

综合现有的硬件资源、实时性与实现难度等因素,设计中仅采用了帧内预测方式,编码器包括帧内预测模块、变换量化模块和CAVLC熵编码模块。处理时以宏块 (16×16)为单位,亮度和色度块分别进行帧内预测、变换量化和反变换反量化,然后进行CAVLC熵编码,图像的亮色比为Y:U:V=4:2:O。

H.264编码器设计前期先用VC++在PC机上实现,后期移植到FPGA上用自定义硬件模块实现,二者所需时间如表1所列。可以看出,用硬件实现 H.264压缩编码一帧图像只需约16 ms,较PC机实现有很大提高,而且硬件模块占用的资源不到50%,性价比较高。

由于自定义帧内预测硬件模块较软件实现对系统性能提高较大,这里重点分析帧内预测模块硬件结构设计。

根据H.264帧内预测算法,帧内预测模块是在非率失真优化模式下设计的。它通过接口模块从SDRAM中读入一个MB(16×16)的亮度和色度图像数据,在亮度和色度预测模块中对当前MB进行预测和预测模式选择,输出预测残差及最佳预测模式;同时将预测结果与经过反DCT变换和反量化之后的残差值相加,经重构模块补偿重构后写回SDRAM。主要结构如图7所示,整个模块分为4个子模块:接口模块、亮度预测、色度预测和图像重构模块。

接口模块中设计了4个RAM,用于存放读入的原始图像和用于预测的参考图像数据:RAM0存放亮度预测像素,深度32,地址0~15存放上侧预测参考像素,地址16~31存放左侧预测参考像素;RAMl存放当前宏块亮度原始值,深度为256;RAM2存放色度预测参考像素,深度32,地址0~7存放上侧 Cb预测参考像素,地址8~15存放左侧Cb预测参考像素,地址16~23存放上侧cr预测参考像素,地址24~31存放左侧Cr预测参考像素;RAM3 存放当前宏块色度原始值,深度为128。

亮度预测模块的内部结构如图8所示。

①模式选择模块根据当前宏块的预测参考像素可用信息(avail)指定当前宏块按一定顺序做预测,如avail=“11”表示上侧和左侧预测参考像素均可用,则对当前宏块顺序做DC、HOR、VERT、PLANE四种方式预测。在残差处理模块中,采用了2个RAM顺序保存各种预测模式的预测残差,所以在模式选择模块里会比较当前预测模式的代价函数和前一种预测模式代价函数的大小。如果当前预测模式的代价函数较小,则说明当前预测模式较优,在做下一种模式预测时将预测残差指定保存在上次较差预测模式的残差RAM中。当前宏块的可用预测模式都预测结束后,模式选择模块根据每一种模式预测代价函数决定出最优预测模式,并指出该预测模式对应残差处理模块中存放的RAM,将相应的残差输入到整数变换模块。

②预测模块包含了DC、HOR、VERT、PLANE四种预测模式的实现实体,根据模式选择模块决定的预测模式从接口模块读取预测参考像素和原始像素值,预测后残差输出到残差处理模块,预测值输出到补偿重构模块保存。

③残差处理模块采用2个存放残差的RAM,每个宏块可先并行做2种预测,残差分别保存到2个RAM中,选择其中较佳预测模式,再做下一种预测模式与前面所选较佳预测模式比较,直到完成所有预测模式选择出最佳预测模式。

④预测代价模块是计算每一种预测模式的预测代价,以4×4块为单位作hadamard变换,将变换后每个4×4块DC系数再做一次hadamard变换,将所有变换结果进行绝对值累加就是对应的预测代价。

色度预测模块结构基本和亮度预测相同,只是由于色度有Cb、Cr两个分量,残差在RAM中的存放方式略有差别;同一个宏块的色度预测和亮度预测是并行执行的,由于要处理的色度数据比亮度少一半,笔者在后面的整数变换中采用先处理色度,再处理亮度的方法,使得流水更加紧凑,减少等待时间,提高整个模块的运行速度。

3 结论

笔者设计的基于NiosII的低码率实时H.264视频编码系统,在系统时钟频率100 MHz时,压缩一帧320×240的彩色图像需16.283 ms,在量化参数选择30时,图像压缩比达到2%,实时监控图像帧率25帧/s。系统具有资源占用较少,低成本,低码率,高清视频质量的特点,具有较好的发展前景。

图9为集成开发环境下综合仿真后系统的资源占用情况。

责任编辑:gt

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 处理器
    +关注

    关注

    68

    文章

    18261

    浏览量

    222094
  • FPGA
    +关注

    关注

    1602

    文章

    21309

    浏览量

    593126
  • 编码器
    +关注

    关注

    41

    文章

    3360

    浏览量

    131481
收藏 人收藏

    评论

    相关推荐

    TI DAVINCI的商业级H.264 视频编码器源码供应

    /davinciedu.html成都宇鸿科技是一家在TI DAVINCI 平台专注3G和视频编解码算法优化和实现的公司,是国内少数能整体提供嵌入式3G, H.264超低码率编码器,基于VPN的视频联网传输平台的公司之一
    发表于 12-02 14:10

    基于Blackfin533的H.264编码

    平台总体框架图 图3 H.264编码模块图 2 H.264编码器的优化 2.1 总体优化   [td] 总体优化主要包括两部分内容:程序模
    发表于 07-13 17:12

    编码器实现

    的调整、汇编程序的处理、内存终结模式的调整等。  H.264编码采用变换和预测的混合编码方法,其原理如图2所示。输入帧或者场Fn以宏块为单位
    发表于 08-10 14:54

    例程:如何使用PX2编码H.264 [CODE_PX2]Encode_H264

    PX2实际上也开放了接口可以对H.264等裸码流进行解码。这里提供一份代码即可实现H.264裸码流的解码,如果您具有一定的Android系统开发
    发表于 02-10 18:02

    DE2开发板资料

    本帖最后由 1477572187 于 2015-9-22 17:13 编辑 DE2开发板资料EP2C35F672C6官方资料,例程,用户手册,原理图
    发表于 03-14 10:27

    DE2开发板TV怎么实现视频的播放

    DE2开发板TV那块是怎么回事,怎么实现视频的播放,是将写好的视频代码下载到板子里,还是将视频连接到板子上,在连接VGD显示就可以播放了。谁能具体讲讲这块的内容
    发表于 11-02 12:49

    采用FPGA和NiosII实现实时H264视频编码器

    H.263和MPEG一4可以节省20%~50%的码率。就其基本档次而言,编码器的复杂度是H.263的10倍左右。H.264良好的网络亲和性和优异的压缩性能使其成为视频应用的首选,但其巨
    发表于 07-29 06:52

    怎么设计基于DSP的H.264编码器电路?

    H.264标准的编解码运算速度要求。因此,在稳定的媒体处理器平台上实现H.264标准有着较好的工程意义和应用前景。
    发表于 09-04 06:19

    如何去实现并优化一种H.264视频编码器

    什么是H.264视频编码技术?如何去实现并优化一种H.264视频编码器
    发表于 06-03 07:00

    怎么实现基于ADSP-BF561的H.264编码器设计?

    在DSP平台上进行视频产品开发有什么优势?怎么实现基于ADSP-BF561的H.264编码器设计?
    发表于 06-07 06:46

    怎样去设计一种低码率实时H.264视频编码器

    一种基于NiosII的低码率实时H.264视频编码器设计
    发表于 06-07 07:06

    基于ADSP-BF561的H.264视频编码器实现

    基于ADSP-BF561的H.264视频编码器实现 H.264/AVC是ITU-T VCEG和ISO/IECMPEG联合制定的最新视频
    发表于 12-26 14:43 714次阅读

    Jointwave发布的H.264编码器实现1080p

    Jointwave发布的H.264编码器实现1080p Jointwave发布的H.264编码器技术提供了单芯片HD和超低功耗广播级视频
    发表于 01-04 08:41 1135次阅读

    基于PowerPC的H.264编码器中断处理程序解析

    基于PowerPC的H.264编码器中断处理程序解析
    发表于 01-04 15:26 6次下载

    基于NiosII的低码率实时H.264视频编码器

    系统。在相同的图像质量情况下,H.264比H.263和MPEG一4可以节省20%~50%的码率。就其基本档次而言,编码器的复杂度是 H.263的10倍左右。H.264良好的网络亲和性和优异的压缩性能使其成为视频应用的首选,但其巨
    发表于 02-27 07:04 354次阅读
    基于<b class='flag-5'>NiosII</b>的低码率实时<b class='flag-5'>H.264</b>视频<b class='flag-5'>编码器</b>