0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

浙大学者质疑Nature超低介电常数非晶氮化硼

ExMh_zhishexues 来源:网易新闻 作者:各有态度 2021-02-20 13:49 次阅读

突破极限亦或是一个乌龙?所幸物理图像非常清晰,实验验证也极其简单,让我们拭目以待。。。

背景

应用于半导体集成电路的互连隔离电介质材料(即低k材料)的介电常数决定了信号在元件间传输时由电介质层电容引起的延迟,而寻找介电常数小于2的材料一直是巨大的挑战,现已成为集成电路向更小特征尺寸、更高集成度方向发展的关键瓶颈问题。现有的低k材料主要为SiO2(k=4)及其衍生物(k=2.8-3.7)。虽然通过引入气孔可将介电常数进一步降低,但会引起绝缘性能、力学性能及化学稳定性恶化等一系列问题,难以获得实际应用。在此背景下,韩国蔚山国立科学技术研究院Seokmo Hong与Hyeon Suk Shin、三星先进技术研究院Hyeon Jin Shin、英国剑桥大学Manish Chhowalla等多所院校的研究人员通过感应耦合等离子体化学气相沉积法(ICP-CVD),以硅为基板,制备出3 nm厚的致密非晶氮化硼(a-BN)薄膜[1]。报道称此薄膜除具有超低介电常数(100 kHz下k=1.78,1 MHz下k=1.16)外,还表现出优秀的绝缘性能、力学性能及化学稳定性。

c7e94774-71bb-11eb-8b86-12bb97331649.png

a-BN与h-BN(六方氮化硼)的介电常数与光频折射率[1]。

浙大学者的质疑

上述令人振奋的结果,若能确证,无疑是重大科学突破。然而,该结果很快受到浙江大学李雷博士与陈湘明教授的公开质疑。该质疑在最新一期Nature杂志的Matter Arising栏目正式发表[2],而该杂志按规范同时登载了原论文作者的回应[3]。国际顶级期刊论文收到公开质疑,不可避免引起广泛关注与热议。因此,知社在咨询几名电介质领域权威专家意见后,尝试从纯专业角度剖析该质疑与回应、以及其可能的科学意义。

李雷博士与陈湘明教授的主要质疑与论点如下:

1. 文献[1]中报道的a-BN在100 kHz–4MHz、h-BN在10 kHz–4 MHz下的介电常数明显低于两者在可见光频率下(633 nm或4.74×1014 Hz)的数值。而根据电介质物理,在可见光频段仅有电子极化对介电常数有贡献,其它极化极制已退出响应,故材料在较低频率下的介电常数应高于其在可见光频段的数值。

2. 当频率超过1 MHz时,文献[1]中a-BN的介电常数降至1以下,在4MHz时仅为~0.4,表明测试结果不可靠。这是因为除非在离子共振、电子共振等特殊情况下,电介质的介电常数应始终高于真空介电常数(k = 1)。

文献[1]中报道的a-BN与h-BN薄膜在不同频率下的介电常数[2]

c7fea394-71bb-11eb-8b86-12bb97331649.png

以上分析表明文献[1]中报道的超低介电常数被明显低估了,最可能的原因则是其半导硅基板作为底电极对电容的贡献。半导体中存在电导与极化的共存与竞争,故也可看作具有高介电损耗的电介质。随着半导体电阻率的下降,电导的贡献将增强,而极化的贡献将减弱,但电容效应可忽略时对应的电阻率上限仍未知。文献[1]中使用的n++ Si电阻率<0.005 Ω·cm[3],远高于常用金属电极(10-6 Ω·cm数量级),故将其视为高损耗电介质、而非金属电极更为合适。这样,文献[1]中测得的电容Cm实际上是薄膜电容Cf与硅基板贡献的电容Cs串联后的结果,即:1/Cm = 1/Cf + 1/Cs,并因此导致了薄膜的实际介电常数被低估。薄膜越薄,此效应越明显。此外,频率从10 kHz升至4 MHz时,文献[1]中薄膜的介电常数显著降低,对应着强烈的介电驰豫。生长在金属W基板上的a-BN薄膜在此频率范围内并无此现象[4],而在对硅介电性能的研究中却发现了类似的介电驰豫行为[5]。这些数据均表明文献[1]中报道的介电常数受硅基板电容效应的影响而被低估。

c813e998-71bb-11eb-8b86-12bb97331649.png

高阻硅的电容随频率的变化[5]。

原论文作者的回应

针对以上质疑,原论文作者做出以下回应[3]:

1.Li和Chen称,材料在可见光频段下的介电常数,应小于其在较低频率下的值,这对陶瓷等极性材料有效,却不适用于金刚石、PTFE及a-BN等非极性材料。而文献[1]中的理论和光谱测试表明,尽管B和N原子的电负性有微小差异,但随机原子结构导致了a-BN的非极性,故其在可见光频段及较低频率下的介电常数不必不同。

2. 文献[1]中出于谨慎考虑,较低频率下a-BN的介电常数采用了最高测试值。而对原始数据更细致的分析及新增测试结果则表明:不同频率下a-BN介电常数的差别在测试标准偏差允许的范围内,即1 MHz下的最高值(k≈ 1.47)与633nm下的最低值(k≈ 1.44)接近、100 kHz下的最低值(k≈ 1.71)与633nm下的最高值(k≈ 1.72)接近。

3.文献[1]中采用的底电极是简并态n++硅、而非半导的硅,其电阻率(<0.005Ω·cm)接近金属(~10-3Ω·cm),故应视为金属电极而非高损耗电介质。

4. 文献[1]中光谱学分析未发现SiBN及B渗入Si中,新增的C-V曲线中也未发现滞后或耗尽行为,表明Si基板并不影响介电测试结果。

5. 介电损耗(DF)可以用来表征电容器的质量,DF<0.1则可用于评估介电常数测试结果的可靠性。新增的数据表明,a-BN在10 kHz–1MHz间的DF均<0.1,而在1 MHz以上DF则迅速升高。因此,10 kHz–1 MHz间的介电常数是可靠的,而更高频率下低于1的介电常数则是由于远大于0.1的DF,没有物理意义。

a-BN薄膜在不同频率下介电常数的更新数据[3]

c8735130-71bb-11eb-8b86-12bb97331649.png

c8be0dd8-71bb-11eb-8b86-12bb97331649.png

a-BN薄膜的C-V曲线[3]

a-BN薄膜的介电损耗随频率的变化[3]

专家点评

针对这一争鸣,知社请教了几位领域大家。

中国工程院院士、清华大学材料学院周济教授着眼物理常识:

“致密无机介质材料具有如此低的低频介电常识有悖于常识,光频介电常数高于低频从原理上也很难说通。原作者并未给出一个令人信服的解释。对于这样的实验结果,需要严谨审视其实验方法和过程。如果测试结构中有谐振机制存在,可能会导致较低的表观介电常数。这种情况下,会有可观察的频率色散和介电常数虚部的升高,但从原作者给出的数据看似乎没有谐振。因此,陈湘明教授等人的质疑是有道理的,而原作者的回复很难解释其中的问题。”

信息产业部第七研究所高级工程师庄严博士侧重测试方法:

“n型重掺杂硅为底电极,其电导率比常用金属电极材料仍低3个数量级,电子浓度远低于金属。重掺硅与金属间仍然存在费米能级之差,而费米能级之差与功函数之差相等,两者接触存在势垒,在低电压(如0.5V)下测量因为串联外加电容器而导致显示的电容量下降,由此计得的介数常数偏低。李、陈二位的质疑有半导体物理常识根据,作者认为底电极应视为金属电极之说难以服人。实证也十分容易,可在作者认为合适的金属上生长3nm的a-BN介质薄膜进行测量对比。”

南京大学Ising先生则进一步质疑了原作者的回复:

“Ising 以为,均匀绝缘体介质的本征介电响应,其实是一个物理图像相对简单的大学电磁学或电动力学问题。虽然介电常数的准确计算并不容易,但从物理图像推演其规律性的结论并不困难,过程也通俗易懂。这里,随激励信号频率升高,本征介电常数下降,就是这样的普适性规律,跟介质是不是极性的应该无关。宣称突破大学基础物理中的那些千锤百炼的规律,是一件危险的事情,应该谨慎对待,否则很容易被质疑及至翻船。”

可能的科学意义

看来,质疑远未化解,争议依然存在。超低介电常数非晶氮化硼薄膜,究竟是重大科学突破,还是纯粹的错误测试结果,恐怕一时难以定论,只有留待时间来检验。也许还会有新的质疑出现,也许原论文作者未来能够拿出新的、符合基本物理原理的数据来消除疑虑,也许他们会修订他们的论点。而这,大概也是科学研究的必由之路。

无论这场科学争辩以什么结果告终,由浙大学者发起的这项质疑,无疑有着十分重要的科学意义。首先,这项可能的重大突破毕竟过于震撼,以至于颠覆好几项电介质物理的基本原理与常识,不经过充分的质疑与检验,难以确认其可靠性。其次,这个质疑还附带引出了如下基础科学问题的思考:利用重掺杂硅衬底为底电极测试薄膜介电常数的方法,究竟在什么条件下是可靠的,什么条件下附加电容效应会带来不可接受的误差?而这一重要课题的解决,可能需要电介质与半导体两个领域学者的通力合作。如果能成为这一交叉领域发展的契机,则将是这场科学争辩一大意外的贡献。

原文标题:突破极限亦或乌龙?浙大学者质疑Nature超低介电常数非晶氮化硼

文章出处:【微信公众号:知社学术圈】欢迎添加关注!文章转载请注明出处。

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 集成电路
    +关注

    关注

    5320

    文章

    10719

    浏览量

    353294
  • 半导体
    +关注

    关注

    327

    文章

    24479

    浏览量

    202017

原文标题:突破极限亦或乌龙?浙大学者质疑Nature超低介电常数非晶氮化硼

文章出处:【微信号:zhishexueshuquan,微信公众号:知社学术圈】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    使用MD和MO/DFT计算相对介电常数

    不同分子的相对介 电常数 计算 目的和方法 介电常数有三个分量:电子极化、离子极化和定向极化。在实验中,它们的总和被认为是介电常数,但在模拟中进行计算时,应选择合适的方法并对每种方法分别进行计算
    的头像 发表于 04-18 09:34 77次阅读
    使用MD和MO/DFT计算相对<b class='flag-5'>介电常数</b>

    相对介电常数介电常数的关系

    相对介电常数介电常数是描述材料电学性质的两个重要参数。它们之间存在着密切的关系,相互之间的转换可以通过简单的数学公式进行计算。 在开始讨论这个关系之前,我们先来了解一下相对介电常数介电常数
    的头像 发表于 01-14 11:25 2415次阅读

    超高导热氮化硼在3D打印复合材料中的优势

    在导热填料中,氮化硼因其化学稳定性、绝缘性、高导热性和高弹性模量等优点,被认为是一种非常有前景的绝缘导热填料。同时,它表现出了显著的各向异性导热性能,其中面内导热系数[300~600W
    的头像 发表于 12-19 16:45 297次阅读

    为什么FR4的介电常数DK值为4.2-4.8之间?

    编者注:近日,有一位会员要求加工一款天线,指定必须要FR4的介电常数为4.5。我只能表示我无能为力,无法保证FR4这么精确的DK值。今天就来为大家解释一下,为什么FR4(玻璃纤维环氧树脂覆铜板)的介电常数(DK)值通常标注为4.2-4.8之间?
    的头像 发表于 11-03 10:27 2434次阅读
    为什么FR4的<b class='flag-5'>介电常数</b>DK值为4.2-4.8之间?

    介电常数材料的失效分析

    介电常数材料是指介电常数较小的材料,通过降低集成电路中使用的介电材料的介电常数,可以降低集成电路的漏电电流、降低导线之间的电容效应、降低集成电路发热等等,更可以有效提升电子元器件的速度。
    的头像 发表于 10-12 09:44 753次阅读
    低<b class='flag-5'>介电常数</b>材料的失效分析

    信号完整性的介电常数有哪几种?

    导体之间的绝缘材料会增加它们之间的电容量,引起电容增大的这一材料特性称为相对介电常数,通常用ε_r来表示。
    的头像 发表于 09-22 11:06 678次阅读
    信号完整性的<b class='flag-5'>介电常数</b>有哪几种?

    介电常数测试仪能测液体吗?#介电常数 #介质损耗 #介电常数测试仪

    测试仪介电常数
    南京大展检测仪器
    发布于 :2023年09月15日 11:40:48

    二维氮化硼绝缘导散热膜在手机PAD电脑AR/VR产品应用

    200W快充再创速度纪录,航天级氮化硼散热材料功不可没!在科技飞速更新的移动设备领域,vivoiQOO11S以200W的快充实非业内首屈一指的。这款手机的划时代技术不仅在充电效率上达到了新高度,成功
    的头像 发表于 08-18 08:12 1936次阅读
    二维<b class='flag-5'>氮化硼</b>绝缘导散热膜在手机PAD电脑AR/VR产品应用

    航天级氮化硼材料白石墨烯助力手机快充

    7月4日,vivoiQOO11S正式发布!200W快充再创速度纪录,航天级氮化硼散热材料功不可没!在科技飞速更新的移动设备领域,vivoiQOO11S以200W的快充实非业内首屈一指的。这款新型手机
    的头像 发表于 07-06 10:03 1573次阅读
    航天级<b class='flag-5'>氮化硼</b>材料白石墨烯助力手机快充

    二维氮化硼绝缘高导热低介电材料介绍应用

    关键词:六方氮化硼纳米片,二维材料,TIM热界面材料,低介电,新能源材料摘要:随着微电子行业的不断发展,高性能导热材料引起了人们的广泛关注。六方氮化硼(h-BN)是制备电绝缘、高导热复合材料的重要
    的头像 发表于 06-30 10:03 2010次阅读
    二维<b class='flag-5'>氮化硼</b>绝缘高导热低介电材料介绍应用

    介电常数对薄膜陶瓷基板性能的影响研究

    近年来,薄膜陶瓷基板在电子器件中的应用逐渐增多。在制备和应用过程中,介电常数是一个极其重要的参数,不同介电常数的薄膜陶瓷基板在性能方面存在较大差异。本文旨在研究介电常数对薄膜陶瓷基板性能的影响,为薄膜陶瓷基板的制备和应用提供理论
    的头像 发表于 06-21 15:13 683次阅读
    <b class='flag-5'>介电常数</b>对薄膜陶瓷基板性能的影响研究

    日本东京大学:研制纳米级量子传感器实现高清成像

    传感新品 【日本东京大学:研制纳米级量子传感器实现高清成像 】 科技日报北京6月15日电 (记者张佳欣)日本东京大学科学家利用六方氮化硼二维层中的硼空位,首次完成了在纳米级排列量子传感器的精细任务
    的头像 发表于 06-19 10:02 508次阅读
    日本东京<b class='flag-5'>大学</b>:研制纳米级量子传感器实现高清成像

    日本东京大学科学家首次完成纳米级排列量子传感器的精细任务

      近日,日本东京大学科学家利用六方氮化硼二维层中的硼空位,首次完成了在纳米级排列量子传感器的精细任务,从而能够检测磁场中的极小变化,实现了高分辨率磁场成像。 氮化硼是一种含有氮和硼原子的薄晶体材料
    的头像 发表于 06-17 10:13 362次阅读
    日本东京<b class='flag-5'>大学</b>科学家首次完成纳米级排列量子传感器的精细任务

    什么是氮化镓(GaN)?

    镓具有更小的晶体管、更短的电流路径、超低的电阻和电容等优势,氮化镓充电器的充电器件运行速度,比传统硅器件要快 100倍。 更重要的是,氮化镓相比传统的硅,可以在更小的器件空间内处理更大的电场,同时提供更快的开关速度。此外,
    发表于 06-15 15:41