0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

3种新型保护器件的工作原理及在电路中的应用设计

电子设计 来源:电源技术应用 作者:沙占友,王彦朋 2021-02-03 09:48 次阅读

引言

评价开关电源的质量指标应该是以安全性、可靠性为第一原则。在电气技术指标满足正常使用要求的条件下,为使电源在恶劣环境及突发故障情况下安全可靠地工作,必须设计多种保护电路,比如防浪涌的软启动,防过压、欠压、过热、过流、短路、缺相等保护电路。

1 有源电磁干扰滤波器的原理与应用

有源电磁干扰滤波器简称有源EMI 滤波器,它是把有源器件集成在微封装的芯片中,专门用来抑制电磁干扰的滤波器。与传统的无源EMI滤波器相比,有源EMI 滤波器不仅具有优良的噪声衰减特性,而且功能强大,有的还能实现热插拔,可大大节省印制板(PCB)的空间,适用于电源及电子设备、医疗仪器等领域。

有源EMI 滤波器的典型产品有美国Vicor 公司生产的QPI(Quiet Power Input)系列,主要包括QPI-3L~QPI-6L,QPI-8L。QPI系列EMI 滤波器的产品分类见表1。其中,QPI-8L 属于带热插拔(Hot-swap)功能的有源EMI滤波器。

3种新型保护器件的工作原理及在电路中的应用设计

1.1 QPI-8L型有源EMI滤波器的性能特点

QPI-8L符合直流48V或60V总线的要求,能对150 kHz~30MHz 的传导噪声(共模噪声及差模噪声)进行衰减,在250 kHz 时的共模噪声衰减能力大于40dB,差模噪声衰减能力大于70 dB。它能在80V直流电压下连续工作,并能承受100V直流浪涌电压,其对地绝缘电压为1500V,最大工作电流为6A,最大负载为200W。与无源EMI滤波器相比,共模噪声衰减能力可提高20dB,差模噪声衰减能力可提高10~30dB。具有浪涌电流限制及断路、可编程欠电压/过电压保护、电源电压正常指示等功能。默认的欠电压阈值为34V(关断时的滞后电压为2V);过电压阈值为76V(关断时的滞后电压为4V);利用外部分压电阻还可改变欠电压及过电压的阈值。使用方便,具有热插拔功能,允许带电插入或拔下有源EMI 滤波器。满载时的效率高于99%,特别适合滤除DC/DC 电源变换器的电磁干扰。利用厂家提供的QPI-EVAL1软件,可以很方便地对安装好的QPI-8L及终端设备进行测试。

1.2 QPI-8L型有源EMI 滤波器的工作原理

QPI-8L 的内部框图如图1 所示。BUS+、BUS-端分别接总线的正极、负极。SW端接受控于热插拔功能的满幅值负压。SHIELD为屏蔽端,与负载的屏蔽端、Y 电容的公共端接在一起。QPI+、QPI-分别接负载的正、负输入端。PWRGD(Power good)为电源电压正常指示的输出端(集电极开路输出),当电源电压不正常时该端输出低电平。UVEN端、OV端各接1个电阻分压器,分别设定欠电压、过电压阈值。主要包括以下5部分。

(1)热插拔功能电路;

(2)EMI滤波器;

(3)供欠电压检测用的内部分压电阻(R1、R2);

(4)供过电压检测用的内部分压电阻(R3、R4);

(5)P沟道MOSFET

当电源电压不正常时MOSFET 关断,可将负载断开,起到保护作用。

QPI-8L在0.01~30 MHz频率范围内对共模噪声的最大衰减量约为70 dB,对差模噪声的最大衰减量可达82 dB。这是无源EMI 滤波器难以达到的指标。QPI-8L型有源EMI滤波器与3 种无源EMI 滤波器产品对差模噪声的插入损耗曲线图如图2 所示。图2中,曲线a 代表QPI-8L,曲线b、c、d 分别代表3 种无源EMI 滤波器典型产品。显然,QPI-8L 能在很宽的频率范围内抑制差模噪声。

1.3 有源电磁干扰滤波器的典型应用

QPI-8L的典型接线图如图3 所示,将它插在总线电源与DC/DC电源转换器之间。DC/DC 电源转换器直接安装在印制板上并加屏蔽罩。C2~C6为旁路电容,容量可选0.047μF。

2 集成过电压保护器件

近年来,随着亚微米制造工艺的进步,许多新型集成电路的工作电压愈来愈低,芯片承受过电压的能力也随之下降,这就使得保护电路的作用更加重要。过电压保护简称OVP(Over Voltage Protection)。集成过电压保护器件的典型产品有美国安森美(Onsemi)半导体公司推出的新型过电压保护集成电路NCP345,MAXIM 公司生产的MAX4843 系列( 含MAX4843、MAX4844、MAX4845、MAX4846 共4 种型号)。这类新器件的集成度高,体积小,能大大减少外部元器件的数量,降低过电压保护器的成本。可广泛用于手机数码相机、笔记本电脑、个人数字助理(PDA)、便携式CD机、汽车备用充电器及便携医疗设备中。下面以NCP345 为例,介绍集成过电压保护器件的原理与应用。

2.1 NCP345型集成过电压保护器的原理

NCP345 采用先进的Bi-CMOS 制造工艺,可承受30V的瞬态电压。它能在小于1μs的时间内迅速关断P 沟道MOSFET,确保负载不受损坏。其关断速度比低压CMOS 监测电路要快得多,后者在同样负载情况下只能承受12V的瞬态电压,而关断时间长达200μs。适合接在AC/DC电源适配器(或电池充电器)与负载之间,电池充电器可以是锂离子(Li-Ion)电池充电器、镍氢(NiMH)电池充电器。它具有过电压断电和欠电压锁定功能,能检测出过电压状况并迅速切断输入电源,避免因过电压或电源适配器出现故障而损坏电子设备。其额定过电压阈值的典型值为6.85V。

NCP345的内部框图如图4 所示。主要包括输入级电阻分压器(R1、R2),电压调节器,带隙基准电压源,欠电压锁定电路,具有滞后特性的控制逻辑,MOSFET 驱动器。只要发生以下3 种情况之一,OUT端就输出高电平将MOSFET关断。

(1)UCC下降到欠电压锁定阈值电压(2.8V)以下;

(2)IN端的输入电压高于过电压阈值(6.85V);

(3)CNTRL端输入为高电平。

只要在IN 端与UCC端之间接上电阻分压器,即可调节过电压阈值UOV。

2.2 NCP345 型集成过电压保护器的典型应用

目前,许多便携式电子产品都配有AC/DC 电源适配器,将交流电压转换成直流电压,给内部电池进行充电。一旦电源适配器中产生自激振荡等故障而出现过电压现象,就会损坏敏感的电子元器件。此外,倘若用户在充电过程中突然拔掉电池,也会产生幅值较高的瞬态电压,可能使产品毁坏。针对上述问题,可利用NCP345和MOSFET(P通道)构成过电压保护器,电路图如图5 所示。P通道MOSFET起到开关作用,选内部带保护二极管的MGSF3441 型MOSFET作为开关器件。其主要参数如下:漏- 源电压UDS=20 V,栅-源电压UGS=8.0V,漏极电流ID=1A,最大漏极电流IDM=20 A,最大功耗PDM=950 mW,通态电阻RDS(ON)=78 mΩ。二极管D 采用低压降的MBRM120(1A/20 V)型肖特基二极管,当IF=1 A、TA=25℃时的导通压降仅为0.34V,它与MOSFET 串联成一体,能防止电池短路。利用NCP345 可监视输入电压,仅在安全条件下才能开启MOSFET。稳压二极管DZ1、DZ2分别并联在输入端和负载端,起到过电压二次保护作用。

3 集成过电流保护器件

USB 是通用串行总线(Universal Serial Bus)的英文缩写。它是针对PC机外设的一种新型接口技术,具有传输速率快(USB 2.0 的传输速

率为480Mbps)、即插即用、热插拔、低成本等特性。USB的电源和信号是通过四芯电缆来传输的。USB 2.0规范的电源指标如表2 所列。由于在USB 设备热插拔时会产生瞬间尖峰电流和浪涌电流,因此需要对USB接口、USB 集线器及计算机外设进行限流保护。

AAT4610A是美国先进模拟科技公司(AATI)于2005 年新推出的一种过电流保护电路,适配带USB 接口的各种计算机外设及便携式系统。其同类产品还有美国Vishay 公司生产的SiP4610A。AAT4610A 的内部电路主要包括欠电压闭锁电路、过热保护电路、比较放大器、P沟道MOSFET(带续流二极管)、1.2V基准电压源和限流保护电路。当欠压锁定阈值电压为1.8 V时,将P 沟道MOSFET关断;当电压恢复正常时自动使P 沟道MOSFET导通。

AAT4610A 的应用非常简单,只需串联在需要限流保护的电路中即可,电路图如图6 所示。需要控制的电流从IN端流入,从OUT端流出。C1、C2分别为输入端、输出端的滤波电容,宜采用陶瓷电容。RSET为极限电流设定电阻,其电阻值取决于所需极限电流ILIMIT,设定范围是130 mA~1A。在决定RSET的阻值时,必须考虑ILIMIT的变化。造成ILIMIT变化的原因有以下3种因素。

(1)从输入端到输出端的电压变化,这是由于P沟道功率MOSFET的压降而造成的;

(2)极限电流随温度而变化;

(3)极限电流还受输出电流的影响。

4 结语

本文主要介绍了3种新型保护器件的原理与应用,包括有源电磁干扰(EMI)滤波器、集成过电压保护器件、集成过电流保护器件。

开关电源保护功能虽属电源装置电气性能要求的附加功能,但在恶劣环境及意外事故条件下,保护电路是否完善并按预定设置工作,对电源装置的安全性和可靠性至关重要。验收产品的技术指标时,还应对保护功能进行验证。

责任编辑:gt

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 芯片
    +关注

    关注

    446

    文章

    47758

    浏览量

    409050
  • 滤波器
    +关注

    关注

    158

    文章

    7328

    浏览量

    174768
  • 电磁干扰
    +关注

    关注

    36

    文章

    2043

    浏览量

    104740
收藏 人收藏

    评论

    相关推荐

    汽车电路保护器件设计原理

    这项技术,模块的每一个单独电源电路都可以用一个PPTC器件保护,把电流限制一个安全的数值上,不会将它烧断。
    发表于 01-22 14:42

    电路如何选择最佳的电路保护器件

    电路保护主要是保护电子电路的元器件受到过压、过流
    发表于 11-11 16:35

    挑选电路保护器件的步骤及分析

    电路保护主要是保护电子电路的元器件受到过压、过流
    发表于 07-03 11:06

    分析电路保护器件的王者TVS管

    需要精细保护的电子电路,应用TVS管是比较好的选择。  TVS管的通流容量限压型浪涌保护器
    发表于 12-21 16:10

    浪涌保护器工作原理

    浪涌保护器是常用的限制雷电进行波过电压的装置,常用在220V/380V电源的供电系统。按照工作原理的不同,浪涌保护器可分为电压开关型浪涌保护器
    发表于 04-08 20:08

    通信设备常用电路保护器件

    时间可以达到数百ns以至数ms,保护器件是最慢的。当线缆上的雷击过电压使防雷器的气体放电管击穿短路时,初始的击穿电压基本为气体放电管的冲击击穿电压,放电管击穿导通后两极间维持电压
    发表于 07-26 17:42

    电路保护器件是怎么工作的?

    电源输入端的保护器件:图1的瞬态二极管TVS1,图2的压敏电阻RV190是如何工作的,这两个件起的作用一样吗图3是485的两根通讯线,瞬态二极管有起了什么作用呢
    发表于 08-28 04:35

    新型TVS ESD 系列保护器件

    `新型TVS ESD 系列保护器件新型TVS ESD ARRAYS保护器件提供了低电容、低箝位电压以及高静电放电耐受性,这些正是高速数据传输应用的关键技术参数。本产品
    发表于 07-22 10:02

    电路保护器件TVS有什么特性?工作原理是怎么样的?

    保护器件TVS是普遍使用的一新型高效电路保护器件,它具有极快的响应时间(亚纳秒级)和相当高的浪涌吸收能力。那么
    发表于 04-02 07:03

    电动机缺相保护器电路工作原理

    电动机缺相保护器电路工作原理   该装置的电路工作原理见图21。在A、B、C三相中均串入LSE器件
    发表于 03-13 12:33 4877次阅读
    电动机缺相<b class='flag-5'>保护器</b><b class='flag-5'>电路</b>及<b class='flag-5'>工作原理</b>

    硕凯电子静电保护器件工作原理及选型应用

    硕凯电子SOCAY静电保护器件工作原理及选型应用
    发表于 04-19 09:16 17次下载

    相序保护器是什么_相序保护器工作原理

    本文主要介绍了相序保护器是什么以及相序保护器工作原理
    发表于 08-13 09:39 2.1w次阅读

    缺相保护器工作原理

    保护和电机有关的设备。 缺相保护器工作原理 缺相就是三相电源供电,实际到的不是三相,而是两相或只有一相电。        三相电机电源缺相后电机无法正常工作,长时间缺一相电会烧坏电机线
    的头像 发表于 08-07 21:46 1.2w次阅读

    超温保护器工作原理 超温保护怎么设置

    超温保护器工作原理 超温保护怎么设置  超温保护器是一种用于监测和保护电器设备或系统的温度过高的装置。它的主要作用是在设备温度超过安全范围
    的头像 发表于 12-12 14:15 1460次阅读

    电涌保护器和浪涌保护器有什么区别?工作原理又是什么?

    电涌保护器和浪涌保护器有什么区别?工作原理又是什么? 电涌保护器和浪涌保护器是用于保护电气设备免
    的头像 发表于 12-26 13:42 936次阅读