0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

同态加密或引领密码学的黄金时代

如意 来源:数世咨询 作者:星云 2021-02-12 16:25 次阅读

现代加密方式已经嵌入无数的数字系统和组件,成为保护数据安全性和隐私相关的必要工具。但是密码学现在最大的限制,在于需要处理和分析敏感数据的时候必须进行解密。然而,包括医疗、法律、制造商、金融和在线选举等在内,有大量的领域需要对数据进行分析处理;如果能不使用加密密钥就直接对数据进行分析,就能达成目标的同时,还能确保数据的隐私性。

这就产生了同态加密的概念。同态加密使用基于格加密的算法来隐藏输入值、中值、输出值,甚至函数本身可以让任何没有密钥的人进行计算。换而言之,同态加密可以直接使用于加密数据。

尽管说全同态加密(FHE)才诞生了十年多,伴随强大算力的计算机和更好的算法,使得全同态加密得以落地。

绕过解密

同态加密的想法能追溯到1978年。那个时候,几个MIT的研究人员设计了一种能够加密情况下,进行在单一数学计算(通常是乘法或者加法)的框架。这个概念在2009年得以实现,由Craig Gentry,在斯坦福的博士毕业论文中,设计了第一个全同态加密机制。

Gentry的设计只是一个起步。在过去十多年中,随着云计算物联网的发展,第三方数据分享需求日益增多,而安全隐患也越来越多,从而进一步推动了同态加密的发展,诞生了一些更强大的同态加密算法。如今,同态加密圈的参与者包括IBM、微软、美国国防部高级研究计划局,以及一些创业公司等。

微软研究院的高级密码学家Josh Benaloh认为,直接在加密后的数据上进行计算有非常大的收益,因为这种计算方式能让数据计算进行外包,又能避免数据泄露的风险。

同态加密的落地领域十分广泛。举例而言,如果一个企业想证明他们有足够的资源处理某个项目,或者他们需要给一个外部公司或者政府部门提交数据进行审计;同态加密能够基于提交的敏感财务信息判断其是否合规,而不需要将原有的数据进行呈现。

当和区块链结合的时候,同态加密未来可以融入新的智能合同、工作协议、分摊结算等现在尚无法实现的东西。它可以让区块链中的成员更灵活、安全地分享数据,包括在链上加入或者移除某个成员等。

这些收益不止在于商业层面。同态加密还能让个人提交自身的基因数据来识别自身的风险因素,而不需要泄露这个人的真实身份。

同态加密还支持下一代的网络安全功能。比如,可以通过简洁、无交互的快速加密验证方式,进行“零知识”证明代码中不含有错误,从而实现在不显示产权代码的前提下开发没有漏洞的软件。

隐私问题

同态加密还能使数据的所有者对数据有更强、更颗粒化的控制,意味着数据所有者能基于数据的使用方,按需对数据的接入权限进行许可、拒绝和限制。

同态加密技术对大数据环境尤其适合,因为大数据环境会需要涉及大量的云端计算能力,还要保持其中数据的隐私性。

Gentry表示:“云端可以对加密的数据进行处理,甚至使用的函数本身都是被加密的——这样云端除了数据的体量之外,对数据一无所知。”

以微软的ElectionGuard为例,能让公民确认自己的选票是否被计入,而不需要影响整个选票池的安全和隐私性。每个投票都被加密,并且分配了一个独特的识别码。选票会被计入,但是每个人的身份依然会被隐藏,且不可见。该平台尚处试点阶段,目标是产生可验证、安全、可审计的投票结果。

另一方面,开源项目Microsoft SEAL则提供了一个代码库,供使用者直接运用同态加密,而不需要自己开发复杂的数学公式。该平台能处理所有加密后的实数加法运算与乘法运算,可以通过API被各类环境调用。IBM也开发了一款名为HElib的免费开源同态加密代码库。两个平台都能通过GitHub发行。

同态加密还有多久?

尽管说同态加密领域已经有了很大的突破,但是如果要将同态加密引入业务流之中,依然还有大量的工作要做。其中的一个问题就是性能。在落地中,现有的算法都需要极高的算力上限,意味着加密数据所使用的计算时间会相比未加密数据高出数倍之久。在Benaloh看来,需要的算力之大,使得在落地实践上极其困难。

同态加密在某些领域的效果尤为明显。很多时候,该技术会被微调以适应特别的需求。暂时来看,开发能够适应大范围现实工作中任务的同态加密软件也才刚刚浮现出曙光。“

如果要让全同态加密技术在大部分目的中变得可行,需要改进算法以减少算力消耗。”Benaloh提到,“我们需要进一步改良算法,从而使他们更易于进行全同态加密。”

不过,同态加密的未来似乎很光明,有不少专家认为这项技术能得到广泛运用,在未来数年就能对业界引起巨大影响。
责编AJX

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 数据
    +关注

    关注

    8

    文章

    6509

    浏览量

    87557
  • 密码
    +关注

    关注

    8

    文章

    185

    浏览量

    30255
  • 加密
    +关注

    关注

    0

    文章

    291

    浏览量

    23589
收藏 人收藏

    评论

    相关推荐

    恩智浦:向后量子密码学迁移,我们应该怎么做?

    在之前的博文中,我们介绍了由美国国家标准与技术研究院 (NIST) 主导的后量子密码学 (PQC) 标准化进程,以及未来可能采用的部分PQC标准。在这篇博文中,我们探讨PQC迁移过程中面临的一些挑战
    的头像 发表于 03-22 09:39 701次阅读
    恩智浦:向后量子<b class='flag-5'>密码学</b>迁移,我们应该怎么做?

    【2023电子工程师大会】开源硬件的黄金时代ppt

    【2023电子工程师大会】开源硬件的黄金时代ppt
    发表于 01-03 16:31 11次下载

    什么是后量子密码学?量子计算机vs经典计算机

    后量子密码学(Post-Quantum Cryptography,PQC)是在经典计算机上定义和执行算法,研究量子计算机和经典计算机都无法破解的新密码系统。后量子密码学的提出是为了抵抗量子计算机的攻击,所以又称抗量子计算
    的头像 发表于 12-19 11:42 772次阅读

    异构专用AI芯片的黄金时代

    异构专用AI芯片的黄金时代
    的头像 发表于 12-04 16:42 271次阅读
    异构专用AI芯片的<b class='flag-5'>黄金时代</b>

    【开源三方库】crypto-js加密算法库的使用方法

    和可靠性:crypto-js 实现了经过广泛测试和审查的加密算法,旨在提供安全可靠的加密功能。它采用密码学的最佳实践,并致力于保护数据的安全性和完整性。 • 易于使用的 API:crypto-js
    发表于 09-08 15:10

    STM32密码学原理的应用

    • CA证书:包含的是CA的公钥,用来核实该CA颁发给别人的证书的真实性• 服务器/IoT设备的证书:包含了自己的公钥• 通过公钥加密的消息,只能私钥拥有者可以解密• 可以签证由对应私钥签名的消息的完整可靠性
    发表于 09-08 08:10

    这一天,中国企业一同吹响数字化集结号

    抵达数字经济的黄金时代,或许就在弹指一挥间
    的头像 发表于 08-29 19:15 1006次阅读
    这一天,中国企业一同吹响数字化集结号

    什么是同态加密同态加密为什么能被称为密码学的圣杯?

    同态加密是一种加密技术,允许在不解密的前提下,对密文进行一些有意义的运算,使得解密后的结果与在明文上做 “相同计算” 得到的结果相同。
    的头像 发表于 08-09 10:20 2722次阅读
    什么是<b class='flag-5'>同态</b><b class='flag-5'>加密</b>?<b class='flag-5'>同态</b><b class='flag-5'>加密</b>为什么能被称为<b class='flag-5'>密码学</b>的圣杯?

    密码学原理的应用

    电子发烧友网站提供《密码学原理的应用.pdf》资料免费下载
    发表于 08-02 10:28 0次下载
    <b class='flag-5'>密码学</b>原理的应用

    密码学基本原理(上)

    电子发烧友网站提供《密码学基本原理(上).pdf》资料免费下载
    发表于 08-02 09:13 1次下载
    <b class='flag-5'>密码学</b>基本原理(上)

    现代密码学如何确保交易安全的关键

    现代密码学依赖于两种基本算法——非对称密钥和对称密钥。非对称密钥算法使用私钥和公钥的组合,而对称算法仅使用私钥,通常称为密钥。虽然这两种方法都可以成为数字安全策略的一部分,但每种方法都适用于特定
    的头像 发表于 06-28 10:22 515次阅读
    现代<b class='flag-5'>密码学</b>如何确保交易安全的关键

    是什么让PUF技术成为密码学中最好的保护之一?

    物理不可克隆功能(PUF)用于密码学和嵌入式安全IC中,以生成按需密钥,这些密钥在使用后立即被擦除。PUF技术之所以如此有效,是因为它基于随机物理因素(不可预测和不可控制),这些因素是原生存在的和/或在制造过程中偶然引入的。因此,PUF 几乎不可能复制或克隆。
    的头像 发表于 06-28 10:12 2036次阅读
    是什么让PUF技术成为<b class='flag-5'>密码学</b>中最好的保护之一?

    是什么让密码学更容易?安全认证器和协处理器

    密码学提供了针对安全威胁的强大保护,但并非每个嵌入式设计人员都是密码学专家。为了给产品开发工程师提供一条快速了解该主题基础知识的途径,我们创建了一本密码学手册,其中包含一系列采用工程而非理论方法
    的头像 发表于 06-27 17:24 503次阅读
    是什么让<b class='flag-5'>密码学</b>更容易?安全认证器和协处理器

    加密:它是什么,它是如何工作的?

    私下通信的能力,使得只有预定的各方才能访问机密信息,是密码学最广为人知的能力。我们的产品使用加密来保护敏感数据的机密性,无论是在通信接口之间传输还是存储在内存中。本博客系列将介绍最常用的加密算法,解释它们的差异,并讨论每种算法最
    的头像 发表于 06-27 16:25 629次阅读
    <b class='flag-5'>加密</b>:它是什么,它是如何工作的?

    XR+AI或成新一代趋势?

    对于苹果即将发布首款MR设备,市场关注度不断提升,有望掀起新的“黄金时代”。
    的头像 发表于 06-13 17:40 2082次阅读