0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

摩尔定律在晶圆工艺制程方面已是强弩之末

旺材芯片 来源:国际电子商情 作者:国际电子商情 2020-12-11 13:44 次阅读

摩尔定律在晶圆工艺制程方面已是强弩之末,此时先进的封装技术拿起了接力棒。扇出型晶圆级封装(FOWLP)等先进技术可以提高器件密度、提升性能,并突破芯片I/O数量的限制。然而,要成功利用这类技术,在芯片设计之初就要开始考虑其封装。

数十年来,半导体工艺已经将芯片中晶体管线宽从数十微米逐步降低到几个纳米级别,大约每18个月芯片中晶体管密度就会翻一番,这就是著名的摩尔定律。但与此同时,设计和制造成本不断上升,改进空间逐渐缩小,再加上许多其它困难,阻碍着半导体进一步的发展。此外,随着单个芯片中晶体管密度不断增加,芯片连接也出现了一些问题,例如I/O引脚数量以及芯片间互连的速度都出现了局限。

这些限制在需要大量高带宽内存的应用(如人工智能边缘和云系统)中尤其成问题。为了解决这些问题并继续提高器件密度,业内已经开发出几种先进的封装技术,这些技术可让多个芯片之间以紧凑的高性能封装互连,组装在一起相当于一个芯片。其中一种先进的封装技术就是FOWLP,已经用于移动设备的批量生产中。FOWLP封装工艺是指将单独的芯片安装在称为重分布层(RDL)的中介层(interposer)基板上,可提供芯片之间的互连以及与IO焊盘之间的连接,所有这一切均采用一次成型的封装。

面朝上和面朝下方法

FOWLP有多种形态,每种形态的制造步骤都略有不同,可从多家供应商处获得(如图1所示)。FOWLP组装可以使用“先模具(mold-first)”的流程实现,裸片可以面朝下或面朝上安装;或者使用“先RDL(RDL-first)”方式组装而成。

图1:FOWLP技术形态包括mold-first和RDL-first组装形式(来源:Micromachines)

在mold-first流程中,采用临时的粘合或散热层将裸片附着到载体上,然后将其铸模封装。如果裸片面朝下安装,则下一步是释放临时层,附加RDL层,然后镶上焊锡球,完成封装。如果裸片面朝上安装,则还需要一些其它步骤。

首先,在塑造成型之前,必须添加铜柱来扩展各个裸片的I/O连接。成型之后,必须将模塑件的背面磨细以露出铜柱,然后再附加RDL层并形成焊锡球。

而在RDL-first的流程中,RDL通过临时释放层附着到载体上,然后裸片再附着到RDL上。接着是铸造成型,再释放载体,并形成焊锡球。两种方法的最后一步都是分割组件,这些组件被成批处理,制成独立器件。

不同的方法有不同的成本和性能考量。从成本方面看,mold-first面朝下的方法避免了制造铜柱和进行背面研磨的步骤,因此具有较低的制造成本,适合少量I/O的应用;但它存在裸片移位、晶圆翘曲等问题,因而限制了其在复杂多芯片封装中的使用。

面朝上的方法则避免了上述问题,而且由于芯片背面完全暴露利于散热,因而具备热管理方面的优势。而RTL-first方法的优势在于,在制造过程中可以使用经过验证合格的裸片(KGD),从而提高了良率。

从性能方面看,面朝下方法比其它两种方法的连接路径要短(图2)。其它两种方法都需要铜柱,以扩展到RDL的连接,而且在芯片下方有一层材料增加了连接间的寄生电容,影响了其高频性能。

图2:不同的 FOWLP方法可能影响走线长度并产生寄生效应,这需要在芯片设计中加以考虑。(来源:Micromachines)

先进封装新工具

随着逻辑电路速率的提高,由封装制造导致的这种细微的寄生效应变得越来越重要,它极有可能显著地改变信号时序和特性。因此,想要使用这种高级封装技术的开发人员需要确保其仿真和设计验证工作覆盖封装和芯片设计,从而确保成功应用。

芯片供应商已经开始内部开发自己的工具,以便将封装和芯片设计集成到单个工艺流程中,以供客户使用。然而,内部开发的工具可能会限制设计人员对不同供应商的芯片工艺的选择。如果想混合由不同工艺制成的芯片,则可能需要依靠外包组装和测试(OSAT)厂商提供的工具来验证完整封装的芯片设计。EDA公司正在加紧开发可支持这些先进封装要求的设计与验证工具。

无论采用哪种方式,先进封装将继续扮演越来越重要的角色,因为半导体行业期望延缓摩尔定律的寿命。市场对更小、更快、功能更强大的芯片和系统的需求将持续,而封装似乎已经成为开发人员必须探索的新领域。

责任编辑:lq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 摩尔定律
    +关注

    关注

    4

    文章

    622

    浏览量

    78517
  • 芯片设计
    +关注

    关注

    15

    文章

    889

    浏览量

    54395
  • 封装技术
    +关注

    关注

    12

    文章

    493

    浏览量

    67782

原文标题:关注 | 扇出型晶圆级封装能否延续摩尔定律?

文章出处:【微信号:wc_ysj,微信公众号:旺材芯片】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    功能密度定律是否能替代摩尔定律摩尔定律和功能密度定律比较

    众所周知,随着IC工艺的特征尺寸向5nm、3nm迈进,摩尔定律已经要走到尽头了,那么,有什么定律能接替摩尔定律呢?
    的头像 发表于 02-21 09:46 209次阅读
    功能密度<b class='flag-5'>定律</b>是否能替代<b class='flag-5'>摩尔定律</b>?<b class='flag-5'>摩尔定律</b>和功能密度<b class='flag-5'>定律</b>比较

    中国团队公开“Big Chip”架构能终结摩尔定律

    摩尔定律的终结——真正的摩尔定律,即晶体管随着工艺的每次缩小而变得更便宜、更快——正在让芯片制造商疯狂。
    的头像 发表于 01-09 10:16 347次阅读
    中国团队公开“Big Chip”架构能终结<b class='flag-5'>摩尔定律</b>?

    英特尔CEO基辛格:摩尔定律仍具生命力,且仍在推动创新

    摩尔定律概念最早由英特尔联合创始人戈登·摩尔在1970年提出,明确指出芯片晶体管数量每两年翻一番。得益于新节点密度提升及大规模生产芯片的能力。
    的头像 发表于 12-25 14:54 260次阅读

    摩尔定律时代,Chiplet落地进展和重点企业布局

    电子发烧友网报道(文/吴子鹏)几年前,全球半导体产业的重心还是如何延续摩尔定律,在材料和设备端进行了大量的创新。然而,受限于工艺制程和材料的瓶颈,当前摩尔定律发展出现疲态,产业的重点
    的头像 发表于 12-21 00:30 1023次阅读

    应对传统摩尔定律微缩挑战需要芯片布线和集成的新方法

    应对传统摩尔定律微缩挑战需要芯片布线和集成的新方法
    的头像 发表于 12-05 15:32 324次阅读
    应对传统<b class='flag-5'>摩尔定律</b>微缩挑战需要芯片布线和集成的新方法

    摩尔定律不会死去!这项技术将成为摩尔定律的拐点

    因此,可以看出,为了延续摩尔定律,专家绞尽脑汁想尽各种办法,包括改变半导体材料、改变整体结构、引入新的工艺。但不可否认的是,摩尔定律在近几年逐渐放缓。10nm、7nm、5nm……芯片制程
    的头像 发表于 11-03 16:09 284次阅读
    <b class='flag-5'>摩尔定律</b>不会死去!这项技术将成为<b class='flag-5'>摩尔定律</b>的拐点

    超越摩尔定律,下一代芯片如何创新?

    摩尔定律是指集成电路上可容纳的晶体管数目,约每隔18-24个月便会增加一倍,而成本却减半。这个定律描述了信息产业的发展速度和方向,但是随着芯片的制造工艺接近物理极限,摩尔定律也面临着瓶
    的头像 发表于 11-03 08:28 479次阅读
    超越<b class='flag-5'>摩尔定律</b>,下一代芯片如何创新?

    摩尔定律的终结真的要来了吗

    仍然正确的预测,也就是大家所熟知的“摩尔定律”,但同时也提醒人们,这一定律的延续正日益困难,且成本不断攀升。
    的头像 发表于 10-19 10:49 345次阅读
    <b class='flag-5'>摩尔定律</b>的终结真的要来了吗

    半导体行业产生深远影响的定律摩尔定律

    有人猜测芯片密度可能会超过摩尔定律的预测。佐治亚理工学院的微系统封装研究指出,2004年每平方厘米约有50个组件,到2020年,组件密度将攀升至每平方厘米约100万个组件。
    的头像 发表于 10-08 15:54 684次阅读

    摩尔定律为什么会消亡?摩尔定律是如何消亡的?

    虽然摩尔定律的消亡是一个日益严重的问题,但每年都会有关键参与者的创新。
    的头像 发表于 08-14 11:03 1334次阅读
    <b class='flag-5'>摩尔定律</b>为什么会消亡?<b class='flag-5'>摩尔定律</b>是如何消亡的?

    什么是摩尔定律?

    摩尔定律是近半个世纪以来,指导半导体行业发展的基石。它不仅是技术进步的预言,更是科技领域中持续创新的见证。要完全理解摩尔定律的影响和意义,首先必须了解它的起源、内容及其对整个信息技术产业的深远影响。
    的头像 发表于 08-05 09:36 3537次阅读
    什么是<b class='flag-5'>摩尔定律</b>?

    工艺制程是什么意思 7nm5nm是什么意思

    如果工艺制程继续按照摩尔定律所说的以指数级的速度缩小特征尺寸,会遇到两个阻碍,首先是经济学的阻碍,其次是物理学的阻碍。 经济学的阻碍是,随着特征尺寸缩小,由于工艺的复杂性设计规则的复杂
    发表于 07-31 10:41 774次阅读
    <b class='flag-5'>工艺</b><b class='flag-5'>制程</b>是什么意思 7nm5nm是什么意思

    【芯闻时译】扩展摩尔定律

    来源:半导体芯科技编译 CEA-Leti和英特尔宣布了一项联合研究项目,旨在开发二维过渡金属硫化合物(2D TMD)在300mm晶圆上的层转移技术,目标是将摩尔定律扩展到2030年以后。 2D
    的头像 发表于 07-18 17:25 285次阅读

    摩尔定律时代新赛道—硅光子芯片技术

    纵观芯片发展的历史,总是离不开一个人们耳熟能详的概念 ——“摩尔定律”。
    的头像 发表于 06-15 10:23 831次阅读
    后<b class='flag-5'>摩尔定律</b>时代新赛道—硅光子芯片技术

    摩尔定律已过时?谁还能撑起芯片的天下?

    声称:摩尔定律已死。 摩尔定律简单来说是一个著名的经验规律,即每18-24个月里,集成电路栅可容纳的晶体管数量将翻倍因此,同时成本也将下降一半。该定律已持续几十年,但随着新工艺
    的头像 发表于 05-18 11:04 389次阅读