0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

最常见的4个神经网络错误是什么?

深度学习自然语言处理 来源:AI公园 作者:Yuval Greenfield 2020-11-27 10:49 次阅读

最常见的神经网络错误:

1)你没有首先尝试过拟合单个batch。

2)你忘了为网络设置train/eval模式。

3)在.backward()之前忘记了.zero_grad()(在pytorch中)。

4)将softmaxed输出传递给了期望原始logits的损失,还有其他吗?

这篇文章将逐点分析这些错误是如何在PyTorch代码示例中体现出来的。

代码:https://github.com/missinglinkai/common-nn-mistakes

常见错误 #1 你没有首先尝试过拟合单个batch

Andrej说我们应该过拟合单个batch。为什么?好吧,当你过拟合了单个batch —— 你实际上是在确保模型在工作。我不想在一个巨大的数据集上浪费了几个小时的训练时间,只是为了发现因为一个小错误,它只有50%的准确性。当你的模型完全记住输入时,你会得到的结果是对其最佳表现的很好的预测。

可能最佳表现为零,因为在执行过程中抛出了一个异常。但这没关系,因为我们很快就能发现问题并解决它。总结一下,为什么你应该从数据集的一个小子集开始过拟合:

发现bug

估计最佳的可能损失和准确率

快速迭代

在PyTorch数据集中,你通常在dataloader上迭代。你的第一个尝试可能是索引train_loader。

#TypeError:'DataLoader'objectdoesnotsupportindexing first_batch=train_loader[0]

你会立即看到一个错误,因为DataLoaders希望支持网络流和其他不需要索引的场景。所以没有__getitem__方法,这导致了[0]操作失败,然后你会尝试将其转换为list,这样就可以支持索引。

#slow,wasteful first_batch=list(train_loader)[0]

但这意味着你要评估整个数据集这会消耗你的时间和内存。那么我们还能尝试什么呢?

Python for循环中,当你输入如下:

foriteminiterable: do_stuff(item)

你有效地得到了这个:

iterator=iter(iterable) try: whileTrue: item=next(iterator) do_stuff(item) exceptStopIteration: pass

调用“iter”函数来创建迭代器,然后在循环中多次调用该函数的“next”来获取下一个条目。直到我们完成时,StopIteration被触发。在这个循环中,我们只需要调用next, next, next… 。为了模拟这种行为但只获取第一项,我们可以使用这个:

first=next(iter(iterable))

我们调用“iter”来获得迭代器,但我们只调用“next”函数一次。注意,为了清楚起见,我将下一个结果分配到一个名为“first”的变量中。我把这叫做“next-iter” trick。在下面的代码中,你可以看到完整的train data loader的例子:

forbatch_idx,(data,target)inenumerate(train_loader): #trainingcodehere

下面是如何修改这个循环来使用 first-iter trick :

first_batch=next(iter(train_loader)) forbatch_idx,(data,target)inenumerate([first_batch]*50): #trainingcodehere

你可以看到我将“first_batch”乘以了50次,以确保我会过拟合。

常见错误 #2: 忘记为网络设置 train/eval 模式

为什么PyTorch关注我们是训练还是评估模型?最大的原因是dropout。这项技术在训练中随机去除神经元。

想象一下,如果右边的红色神经元是唯一促成正确结果的神经元。一旦我们移除红色神经元,它就迫使其他神经元训练和学习如何在没有红色的情况下保持准确。这种drop-out提高了最终测试的性能 —— 但它对训练期间的性能产生了负面影响,因为网络是不全的。在运行脚本并查看MissingLink dashobard的准确性时,请记住这一点。

在这个特定的例子中,似乎每50次迭代就会降低准确度。

如果我们检查一下代码 —— 我们看到确实在train函数中设置了训练模式。

deftrain(model,optimizer,epoch,train_loader,validation_loader): model.train()#???????????? forbatch_idx,(data,target)inexperiment.batch_loop(iterable=train_loader): data,target=Variable(data),Variable(target) #Inference output=model(data) loss_t=F.nll_loss(output,target) #Theiconicgrad-back-steptrio optimizer.zero_grad() loss_t.backward() optimizer.step() ifbatch_idx%args.log_interval==0: train_loss=loss_t.item() train_accuracy=get_correct_count(output,target)*100.0/len(target) experiment.add_metric(LOSS_METRIC,train_loss) experiment.add_metric(ACC_METRIC,train_accuracy) print('TrainEpoch:{}[{}/{}({:.0f}%)] Loss:{:.6f}'.format( epoch,batch_idx,len(train_loader), 100.*batch_idx/len(train_loader),train_loss)) withexperiment.validation(): val_loss,val_accuracy=test(model,validation_loader)#???????????? experiment.add_metric(LOSS_METRIC,val_loss) experiment.add_metric(ACC_METRIC,val_accuracy)

这个问题不太容易注意到,在循环中我们调用了test函数。

deftest(model,test_loader): model.eval() #...

在test函数内部,我们将模式设置为eval!这意味着,如果我们在训练过程中调用了test函数,我们就会进eval模式,直到下一次train函数被调用。这就导致了每一个epoch中只有一个batch使用了drop-out ,这就导致了我们看到的性能下降。

修复很简单 —— 我们将model.train()向下移动一行,让如训练循环中。理想的模式设置是尽可能接近推理步骤,以避免忘记设置它。修正后,我们的训练过程看起来更合理,没有中间的峰值出现。请注意,由于使用了drop-out ,训练准确性会低于验证准确性。

常用的错误 #3: 忘记在.backward()之前进行.zero_grad()

当在 “loss”张量上调用 “backward” 时,你是在告诉PyTorch从loss往回走,并计算每个权重对损失的影响有多少,也就是这是计算图中每个节点的梯度。使用这个梯度,我们可以最优地更新权值。

这是它在PyTorch代码中的样子。最后的“step”方法将根据“backward”步骤的结果更新权重。从这段代码中可能不明显的是,如果我们一直在很多个batch上这么做,梯度会爆炸,我们使用的step将不断变大。

output=model(input)#forward-pass loss_fn.backward()#backward-pass optimizer.step()#updateweightsbyanevergrowinggradient????????????

为了避免step变得太大,我们使用zero_grad方法。

output=model(input)#forward-pass optimizer.zero_grad()#resetgradient???? loss_fn.backward()#backward-pass optimizer.step()#updateweightsusingareasonablysizedgradient????

这可能感觉有点过于明显,但它确实赋予了对梯度的精确控制。有一种方法可以确保你没有搞混,那就是把这三个函数放在一起:

zero_grad

backward

step

在我们的代码例子中,在完全不使用zero_grad的情况下。神经网络开始变得更好,因为它在改进,但梯度最终会爆炸,所有的更新变得越来越垃圾,直到网络最终变得无用。

调用backward之后再做zero_grad。什么也没有发生,因为我们擦掉了梯度,所以权重没有更新。剩下的唯一有变化的是dropout。

我认为在每次step方法被调用时自动重置梯度是有意义的。

在backward的时候不使用zero_grad的一个原因是,如果你每次调用step()时都要多次调用backward,例如,如果你每个batch只能将一个样本放入内存中,那么一个梯度会噪声太大,你想要在每个step中聚合几个batch的梯度。另一个原因可能是在计算图的不同部分调用backward—— 但在这种情况下,你也可以把损失加起来,然后在总和上调用backward。

常见错误 #4: 你把做完softmax的结果送到了需要原始logits的损失函数中

logits是最后一个全连接层的激活值。softmax也是同样的激活值,但是经过了标准化。logits值,你可以看到有些是正的,一些是负的。而log_softmax之后的值,全是负值。如果看柱状图的话,可以看到分布式一样的,唯一的差别就是尺度,但就是这个细微的差别,导致最后的数学计算完全不一样了。但是为什么这是一个常见的错误呢?在PyTorch的官方MNIST例子中,查看forward方法,在最后你可以看到最后一个全连接层self.fc2,然后就是log_softmax。

但是当你查看官方的PyTorch resnet或者AlexNet模型的时候,你会发现这些模型在最后并没有softmax层,最后得到就是全连接的输出,就是logits。

这两个的差别在文档中没有说的很清楚。如果你查看nll_loss函数,并没有提得输入是logits还是softmax,你的唯一希望是在示例代码中发现nll_loss使用了log_softmax作为输入。

原文标题:收藏 | 使用PyTorch时,最常见的4个错误

文章出处:【微信公众号:深度学习自然语言处理】欢迎添加关注!文章转载请注明出处。

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4572

    浏览量

    98714
  • pytorch
    +关注

    关注

    2

    文章

    760

    浏览量

    12825

原文标题:收藏 | 使用PyTorch时,最常见的4个错误

文章出处:【微信号:zenRRan,微信公众号:深度学习自然语言处理】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    卷积神经网络的优点

    卷积神经网络的优点  卷积神经网络(Convolutional Neural Network,CNN)是一种基于深度学习的神经网络模型,在图像识别、语音识别、自然语言处理等领域有着广泛的应用。相比
    的头像 发表于 12-07 15:37 2950次阅读

    《 AI加速器架构设计与实现》+第一章卷积神经网络观后感

    《 AI加速器架构设计与实现》+第一章卷积神经网络观感    在本书的引言中也提到“一图胜千言”,读完第一章节后,对其进行了一些归纳(如图1),第一章对常见神经网络结构进行了介绍,举例了一些结构
    发表于 09-11 20:34

    人工神经网络和bp神经网络的区别

    着重要作用。BP神经网络(Back Propagation Neural Network, BPNN)是人工神经网络中的一种常见的多层前馈神经网络
    的头像 发表于 08-22 16:45 3427次阅读

    常见的卷积神经网络模型 典型的卷积神经网络模型

    常见的卷积神经网络模型 典型的卷积神经网络模型 卷积神经网络(Convolutional Neural Network, CNN)是深度学习中最流行的模型之一,其结构灵活,处理图像、音
    的头像 发表于 08-21 17:11 1918次阅读

    卷积神经网络和深度神经网络的优缺点 卷积神经网络和深度神经网络的区别

    深度神经网络是一种基于神经网络的机器学习算法,其主要特点是由多层神经元构成,可以根据数据自动调整神经元之间的权重,从而实现对大规模数据进行预测和分类。卷积
    发表于 08-21 17:07 2313次阅读

    卷积神经网络的介绍 什么是卷积神经网络算法

    卷积神经网络的介绍 什么是卷积神经网络算法 卷积神经网络涉及的关键技术 卷积神经网络(Convolutional Neural Network,CNN)是一种用于图像分类、物体识别、语
    的头像 发表于 08-21 16:49 1423次阅读

    卷积神经网络的基本原理 卷积神经网络发展 卷积神经网络三大特点

    卷积神经网络的基本原理 卷积神经网络发展历程 卷积神经网络三大特点  卷积神经网络的基本原理 卷积神经网络(Convolutional Ne
    的头像 发表于 08-21 16:49 1435次阅读

    卷积神经网络三大特点

    卷积神经网络三大特点  卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习模型,其具有三大特点:局部感知、参数共享和下采样。 一、局部感知 卷积神经网络
    的头像 发表于 08-21 16:49 3567次阅读

    卷积神经网络模型有哪些?卷积神经网络包括哪几层内容?

    卷积神经网络模型有哪些?卷积神经网络包括哪几层内容? 卷积神经网络(Convolutional Neural Networks,CNN)是深度学习领域中最广泛应用的模型之一,主要应用于图像、语音
    的头像 发表于 08-21 16:41 1507次阅读

    卷积神经网络概述 卷积神经网络的特点 cnn卷积神经网络的优点

    卷积神经网络概述 卷积神经网络的特点 cnn卷积神经网络的优点  卷积神经网络(Convolutional neural network,CNN)是一种基于深度学习技术的
    的头像 发表于 08-21 16:41 1931次阅读

    卷积神经网络的应用 卷积神经网络通常用来处理什么

    卷积神经网络的应用 卷积神经网络通常用来处理什么 卷积神经网络(Convolutional Neural Network,简称CNN)是一种在神经网络领域内广泛应用的
    的头像 发表于 08-21 16:41 3974次阅读

    卷积神经网络原理:卷积神经网络模型和卷积神经网络算法

    卷积神经网络原理:卷积神经网络模型和卷积神经网络算法 卷积神经网络(Convolutional Neural Network,CNN)是一种基于深度学习的人工
    的头像 发表于 08-17 16:30 913次阅读

    卷积神经网络通俗理解

    卷积神经网络通俗理解 卷积神经网络,英文名为Convolutional Neural Network,成为了当前深度学习领域最重要的算法之一,也是很多图像和语音领域任务中最常用的深度学习模型之一
    的头像 发表于 08-17 16:30 2285次阅读

    什么是神经网络?为什么说神经网络很重要?神经网络如何工作?

    神经网络是一个具有相连节点层的计算模型,其分层结构与大脑中的神经元网络结构相似。神经网络可通过数据进行学习,因此,可训练其识别模式、对数据分类和预测未来事件。
    的头像 发表于 07-26 18:28 1950次阅读
    什么是<b class='flag-5'>神经网络</b>?为什么说<b class='flag-5'>神经网络</b>很重要?<b class='flag-5'>神经网络</b>如何工作?

    三个最流行神经网络

    在本文中,我们将了解深度神经网络的基础知识和三个最流行神经网络:多层神经网络(MLP),卷积神经网络(CNN)和递归神经网络(RNN)。
    发表于 05-15 14:19 1174次阅读
    三个最流行<b class='flag-5'>神经网络</b>