侵权投诉

苹果要把高效能低功耗的ARM架构,真正用到的PC产品上了

机器人大讲堂 2020-11-25 16:51 次阅读

AndroidiOSARM,Windows、macOS、Intel、x86……

稍微关注数码科技领域的人们,对上面这些名词肯定不会陌生。众所周知,ARM和x86这两大计算架构的底层差异,形成了移动端和PC(个人电脑)端两大阵营。

在移动端,因为谷歌开源的Android和苹果自研自用的iOS这两种操作系统,又划分出了安卓和苹果阵营。在PC端,微软的Windows操作系统和Intel的x86芯片,组成了牢不可破的Wintel阵营,掌控着绝大部分的PC市场份额,而苹果Mac系列虽然也采用Intel的x86处理器,却仍坚持自研的macOS系统,占据了10%的PC市场,走专业办公的高端路线。

这一阵营划分至少从十年前就开始成型,到现在我们大都已经习惯这一格局。买手机和平板,会在安卓或苹果之间站队,买电脑会Wintel联盟和苹果之间站队。

这一用户习惯养成自然非一日之功,其实这些大厂在早期也做过努力挣扎,想用自己具有优势的架构和操作系统来一统移动端和PC的江湖。

微软早先就尝试把Windows操作系统嫁接到ARM指令集上,推出了五彩斑斓的WindowsPhone,也推出过需要运行在ARM架构的电脑和平板上的WindowsRT,结果都是以惨败收场。而英特尔也尝试过x86架构的Atom处理器征战移动芯片领域,同样最后无疾而终。反过来,高通也尝试把骁龙芯片用在PC上,但最终也没有掀起波澜。

而如今,这个“移动端用ARM,PC端用x86”的现世安稳的架构,终于又起波澜。这次是蓄谋已久的苹果,要把高效能低功耗的ARM架构,真正用到的PC产品上了。

就在国人纷纷抢货的双11凌晨,苹果举行了今年的第三场发布会“OneMoreThing”,重磅发布了首款基于ARM架构的自研电脑芯片M1,以及搭载M1芯片的三款PC产品。这也是有着36年历史的苹果Mac电脑第一次用上了自家研发的芯片,而且还是采用了和iPhone、iPad所采用的A系列芯片相同的ARM架构。

那么,在Mac系列上推出M1芯片的意义,就不仅仅是要开始和长期合作的Intel官宣“分手”这一层,还等于是要向x86统治下的PC市场“下战书”了。

那么,这次苹果的ARM架构芯片想要挑战现有PC格局还有多远?这是本文重点关心的问题。

为Mac改换门庭,先来一颗特别能打的ARM“芯”

在介绍这款M1芯片之前,我们其实都很关心一个问题:为什么苹果要在这个时候推出一款基于ARM架构的PC芯片呢?

我们知道,苹果体系的封闭性是出了名的,从硬件到软件,苹果都选择了自己研发自己用,硬生生打造了一个极致封闭但又体验出众的iOS生态。但在这个封闭生态下仍然留了下为数不多的几个小缺口,在Mac系列电脑上使用的Intel处理器就是其中一个,而且到现在足足用了十五年。

从2005年开始,苹果就将自己的Mac产品从基于ARM的PowerPC架构转向了Intel的x86架构,采用英特尔的奔腾系列让Mac产品的性能一路飙升,配合着自家的macOS系统,一路高歌猛进,占据了PC机的高端市场份额。

现在,Intel的处理器碰到了当年PowerPC架构芯片一样的困境,那就是性能挤牙膏一样的增长,导致苹果Mac系列一直也只能跟着Intel的14nm+++制程的迭代而缓慢推进。Intel的差劲表现早已让追求性能极致提升的苹果心怀不满,多次表示要用自研芯片取而代之。

与此同时,苹果在移动终端上的A系列芯片已经成功推进到了5nm制程,无论是多核的性能水平还是Soc整合能力,都有了超越当前英特尔的CPU内核的能力。

时机已到,这时候苹果也就不讲究什么“江湖武德”了。为了实现全系列硬件生态的统一闭环,苹果就必须把Mac上的Intel处理器踢出局,最终实现在iPhone、iPad和Mac系列上全部用上自研的芯片。

那么,M1芯片是否有这个实力呢?

我们来看下苹果给出的M1的性能介绍。简单来说,M1是苹果第一款基于ARM架构的5nm工艺的电脑芯片,由于采用了目前最先进制程,拥有高达160亿个晶体管,相比新款iPhone所用的A14的118亿个晶体管提升了约35.6%,同时也高于麒麟9000的153亿个晶体管。M1还是一款高度集成的SoC芯片,将CPU、GPU、NPU和各种连接功能及组件统统集合在一起。

在CPU上,拥有4个高性能大核心和4个高效能小核心,可混合运行以协助处理多线程任务,跑分上已经高于Intel的Corei9处理器。这得益于苹果在魔改ARM架构上的领先能力,大核心性能突出,小核心能耗极低,大小核心的协同工作使得其能效比比2012年时候Mac的处理器提升了3倍。

在GPU上,M1集成了8核心的GPU,兼顾了性能和能效,相比A14的GPU核心数量提升了一倍,无论是剪辑还是播放多个全画质4K视频流等重负载也没有什么压力。根据苹果公布的数据,在同等功耗下,M1的GPU性能是其他最新推出的笔记本芯片的GPU性能的两倍,而在同等性下,M1的功耗只有其他笔记本电脑芯片的1/3。

此外,还有等同于A14芯片的16核NPU,满足人工智能算力;同时支持了高达16GB的具有高带宽、低延迟特性的统一DRAM内存体系架构,加快几个处理器直接的数据共享速度。

具体到产品上,搭配了M1的新款MacbookAir的CPU性能是上一代基于英特尔处理的MacbookAir的3.5倍,GPU则提升了5倍,机器学习性能也提升了9倍。苹果称其整体性能超过了98%的PC笔记本。

有了M1芯片的加持,苹果的MacBook在轻量化之路上又能继续升级了,性能提升的同时,ARM架构的低功耗优势尽显,续航时长又大幅提升。这等于说既超越了x86架构芯片的高性能优势,又保持了ARM架构的低功耗优势,无怪外界说苹果Mac进入了一个新的纪元。

我们知道,为PC更换架构,不可能是在一座新地基上新建大楼,而是要在建好的大厦上面换地基,换掉地基还要在不拆掉大楼的前提下让大楼焕然一新。

现在,苹果用ARM架构的CPUSoc,只是完成x86架构的硬件替代的第一步步骤。而原有PC架构上的操作系统和软件,才是苹果换掉ARM架构芯片之后主要面临的问题。

软件先行,苹果做了软件系统迁移的准备

为一个操作系统更换硬件架构,或者让新的架构匹配旧的软件系统,兼容性始终是绕不开的一个难题。

当年微软的败绩还历历在目。2012年,微软推出了基于ARM架构的WindowsRT操作系统,只能预装在采用ARM架构处理器的PC和平板电脑中,只能跑32位的软件。

但这一努力操之过急又过于超前,当时既没有好的硬件产品支持,也没有除微软自有软件之外的软件生态支持。同时还将PC端操作系统移植到平板电脑上。WindowsRT几经挣扎后,最终还是尝试一个“寂寞”。

苹果虽然同样面临软硬件协同的这一挑战,但在处理这一问题上却早有准备。

我们说过,苹果这个科技圈的“异类”把软硬件生态都牢牢掌握在自己手中,在谋划着这次架构转型之前,就已经把系统和软件的迁移的准备工作做好了。

这一次,苹果为macOS配备了最新的BigSur系统。BigSur系统不仅可以流畅运行在ARM架构的展示机上面,就连Photoshop、Lightroom、FinalCutPro、Office、Maya这些偏向生产力的专业领域软件都已经能够完美适配运行。BigSur的基础架构也经过优化,以解锁M1芯片的实力,包括用于图形处理任务的Metal和用于机器学习的CoreML等开发者技术。

而为了让开发者能将原来运行在X86架构芯片之上的Mac应用,更轻松地适配苹果自研的M1处理器,苹果还提供了一系列的工具。比如,可帮助开发者构建同时能在x86和Arm架构芯片上运行的应用的Universal2,可以自动将为英特尔处理器编写的指令转译苹果Arm芯片可以理解的指令,使得苹果Arm芯片直接能运行原x86平台应用程序Rosetta2。

通过这些套件,开发者可以在短时间内将目前x86架构软件迁移到ARM架构的macOS上面。解决了macOS开发者的后顾之忧,又能让iOS、iPadOS上面的开发者轻松将软件迁移到macOS上,苹果的统一软件生态将最终实现。

这一变革带来的体验几乎是革命性的。要知道原本移动场景下的应用和PC场景下的应用是始终割裂的,比如,我们使用的微信,总是要区分出Android、iOS、windows和Mac版,每一个应用都要配置至少3个版本,这样不仅让移动端和电脑端的使用场景隔成体系,严重影响使用体验,也徒增了各大应用平台的开发工作量。

而现在,随着在iPhone、iPad、Mac等产品上都采用了相同的Arm架构的芯片,苹果软件应用生态将彻底打通,在Mac上也可以直接运行iPhone和iPad的软件,Mac上的软件也可以在iPhone和iPad上运行。未来,PC端和移动端的边界将变得更为模糊,最终直至统一,用户的体验将更为一致。一旦苹果实现全平台的统一操作系统之后,苹果的用户粘性将更高,而那些使用了iPhone的用户在需要一台办公设备之后将更愿意选择一台能无缝互联互通的MacBook。

不过从最近反馈的情况来看,macOSBigSur的首次开放更新,仍然遇到了一些兼容性问题,比如对于一些开发者工具,大多还在开发中,早先的MacBook版本在升级这一系统时遇到崩溃和无法使用等问题。而这些问题都是Mac要在此后的系统更新中着手解决的问题。

不管怎样,Mac芯片的架构变革和软件系统的兼容升级,给苹果带来又一轮增长的可能,也对以x86架构处理器为主导的PC市场带来诸多挑战。

除了挑战现有PC格局,苹果M1的影响还有哪些?

我们先来说下苹果M1芯片以及新款Mac的推出,对于现有PC市场格局带来哪些挑战?

据我们推断,搭载自研M1芯片的Mac产品,随着其产品迭代和软件系统的完善,自然会获得更大的PC电脑的市场份额。

但客观来说,x86为主导的PC仍然将长期占据主要市场。一方面,现在x86的优势仍然非常牢固,Intel的x86芯片在高性能计算机或者运行PC端大型游戏中仍然有非常强的性能优势,而Intel一旦突破了14nm制程工艺的瓶颈之后,可能会摆脱“挤牙膏”的尴尬境遇,还会迎来新一轮的增长。另一方面,x86架构所构建的PC端的丰富软件生态,不是macOS生态短时间内能够超越的。

不过,苹果M1芯片的推出,对于ARM架构本身有着更大的激励和示范影响。

第一个影响是,苹果所要构建的基于ARM架构的统一软硬件生态,对于苹果生态内的开发者,具有很强的虹吸效应。不仅是基于原有x86架构的macOS的软件要快速进化到新的架构版本,而且移动终端当中的软件应用也会主动去寻求在Mac上兼容的版本。这将使得苹果带来多场景下的设备融合和体验的一致性,也许未来iPad真正成为兼容移动便利性和专业生产工具的最佳形态。

第二个影响是,苹果如果在Mac上的架构革命的成功,将带给安卓阵营的芯片厂商和PC操作系统霸主的微软以巨大的刺激和激励。比如,高通曾经尝试和微软一起开发的基于骁龙处理器的PC笔记本电脑,可能会重新启动;微软也有可能再次动了采用ARM架构芯片开发windows系统的心思。而这也更加印证了华为HarmonyOS鸿蒙系统,未来在手机、PC以及更多设备上得到应用的可行性。

第三个也是更深一层的影响是,苹果的选择,也证明了在面向万物互联、呼唤全新融合交互IoT时代,相比较于x86架构,ARM可能才是更好的选择。

万物互联场景下,对于大量设备之间除了快速通信的要求之外,必然要求向高数据并发、智能计算和低功耗方向进化。而ARM由于其基于简单指令集的特点,不仅设计更简单、迭代效率更高、还具有高效能低功耗的特点,特别适用于未来人们数字生活的需要。

而x86架构基于复杂指令集,芯片设计复杂,功耗相对较高,开发困难,技术路线相对缓慢,越来越展现出应用前景的专业性和局限性。PC作为与万物交互同样重要的操作界面,从笨重的x86架构走向更广泛融合的ARM架构,就成为一种必然。

不过,x86架构和ARM架构在PC上的角力,未来还将持续很长一段时间,即使这次Intel倒下的话,AMD也可以顶上。而ARM这边,现在只是苹果的一场独角戏。

责任编辑:lq

原文标题:热点|苹果首发ARM架构电脑芯片,将对PC格局带来哪些影响?

文章出处:【微信号:RoboSpeak,微信公众号:机器人大讲堂】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
分享:

评论

相关推荐

Mini/Micro LED和第三代化合物半导体“钱景”看好

  1月22日晚,华灿光电(300323.SZ)公告透露,珠海国企华实控股已签约收购华灿光电24.8....
的头像 高工LED 发表于 01-25 18:04 14次 阅读
Mini/Micro LED和第三代化合物半导体“钱景”看好

英特尔扩大对外部芯片代工厂的使用,这下7nm和4nm都要上

在消费级处理器领域,现在AMD已经全面领先Intel。许多网友认为,Intel落后的原因就是故步自封....
的头像 璟琰乀 发表于 01-25 17:58 17次 阅读
英特尔扩大对外部芯片代工厂的使用,这下7nm和4nm都要上

搭载 Android 11 操作系统手机占比已达 41.5%

1月25日消息 从中国信通院获悉,中国信息通信研究院泰尔终端实验室统计分析数据显示,2020 年第四....
的头像 工程师邓生 发表于 01-25 17:53 23次 阅读
搭载 Android 11 操作系统手机占比已达 41.5%

联发科甜点级产品天玑1200登场,性能怎么样?

联发科的2021首秀。 1月20日,联发科天玑1200正式登场。继高通麒麟之后,联发科也带来了202....
的头像 璟琰乀 发表于 01-25 17:49 30次 阅读
联发科甜点级产品天玑1200登场,性能怎么样?

在10-20年后中国才会出现类似英特尔、高通的这样的全球巨头

1月16日,2021中国半导体投资联盟年会暨中国IC 风云榜颁奖典礼在北京举办。上海临芯投资管理有限....
的头像 Les 发表于 01-25 17:13 61次 阅读
在10-20年后中国才会出现类似英特尔、高通的这样的全球巨头

威视芯姜修平:电视机将控制所有物联网设备,实现真正的家庭自动化

1月16日,2021中国半导体投资联盟年会暨中国IC 风云榜颁奖典礼在北京举办。威视芯半导体(合肥)....
的头像 Les 发表于 01-25 17:10 60次 阅读
威视芯姜修平:电视机将控制所有物联网设备,实现真正的家庭自动化

报道称台积电今年预计可获得18台极紫外光刻机

据国外媒体报道,台积电和三星电子的芯片制程工艺,均已提升到了 5nm,更先进的工艺研发也在推进,并在....
的头像 璟琰乀 发表于 01-25 17:10 48次 阅读
报道称台积电今年预计可获得18台极紫外光刻机

明微电子发布2020年度业绩快报公告,营收5.16亿元

集微网消息,1月25日,明微电子发布2020年度业绩快报公告,该公司营收为5.16亿元,同比增长11....
的头像 Les 发表于 01-25 17:05 95次 阅读
明微电子发布2020年度业绩快报公告,营收5.16亿元

关于苹果新iPhone的最新爆料

苹果2020年推出的iPhone12系列,虽然销售火爆,但仍有遗憾,例如,不支持高刷新率、续航不足等
的头像 我快闭嘴 发表于 01-25 17:02 90次 阅读
关于苹果新iPhone的最新爆料

三星台积电上演晶圆代工龙争虎斗

据华尔街日报报道,三星将投资 170 亿美元(折合约 1101 亿人民币)在美建芯片代工厂,其地址可....
的头像 璟琰乀 发表于 01-25 17:02 81次 阅读
三星台积电上演晶圆代工龙争虎斗

芯片人才培训 4个月冲击年薪45万,有这好事?

我国半导体产业已迎来快速发展的窗口期,而现有的人才培养速度却远远跟不上。对于人才紧缺的集成电路领域,....
的头像 Les 发表于 01-25 16:58 89次 阅读
芯片人才培训 4个月冲击年薪45万,有这好事?

芯聚能:半导体产能短缺会贯穿2021,SiC会迎来爆发的时机

2020半导体行业经历了全球疫情和国际形势的复杂化和不确定性,而2021年行业会如何发展,广东芯聚能....
的头像 Les 发表于 01-25 16:50 83次 阅读
芯聚能:半导体产能短缺会贯穿2021,SiC会迎来爆发的时机

科技巨头跨界造车哪家强?

如同富士康多年的合作伙伴苹果公司一样,这是富士康第二次入局汽车业,虽然投资的对象依然是同一个,但是,....
的头像 我快闭嘴 发表于 01-25 16:37 141次 阅读
科技巨头跨界造车哪家强?

国资助推LED芯片领域企业华灿开启新篇章

地方国资在LED领域再下一城。 位列“中国企业500强”的珠海最大综合型国有集团珠海华发集团旗下全资....
的头像 高工LED 发表于 01-25 16:23 87次 阅读
国资助推LED芯片领域企业华灿开启新篇章

LED芯片行业新一轮的成长曲线正在开启

华灿光电(300323.SZ)公告透露,珠海国企华实控股已签约收购华灿光电24.87%的股权,交易完....
发表于 01-25 16:18 45次 阅读
LED芯片行业新一轮的成长曲线正在开启

注意!苹果警告iPhone12别靠近心脏起搏器

中关村在线1月25日报道,此前有医生在测试中发现,iPhone12在靠近植入式除颤器时会让该设备进入....
的头像 璟琰乀 发表于 01-25 16:14 133次 阅读
注意!苹果警告iPhone12别靠近心脏起搏器

苹果新款MacBook Pro可能会增加SD卡插槽

根据彭博社 Mark Gurman 的消息,新款的 MacBook Pro 将会增加一个 SD 卡插....
的头像 璟琰乀 发表于 01-25 16:03 187次 阅读
苹果新款MacBook Pro可能会增加SD卡插槽

苹果供应链龙头企业立讯精密股价大跌9%

周一A股开盘,苹果供应链龙头企业立讯精密一度大跌9%,市值跌破4000亿人民币,该公司正在接受美国国....
的头像 我快闭嘴 发表于 01-25 16:01 168次 阅读
苹果供应链龙头企业立讯精密股价大跌9%

紫光同芯宣布与金邦达联合研发安全芯片操作系统麟铠正式发布

1 月 25 日消息,紫光同芯宣布与支付产品供应商金邦达,联合研发的安全芯片操作系统麟铠正式发布。 ....
的头像 工程师邓生 发表于 01-25 15:56 132次 阅读
紫光同芯宣布与金邦达联合研发安全芯片操作系统麟铠正式发布

华为表示:完全没有出售手机业务的计划

1月25日下午,华为方面对记者表示,华为完全没有出售手机业务的计划。“华为将坚持打造全球领先的高端智....
的头像 我快闭嘴 发表于 01-25 15:48 169次 阅读
华为表示:完全没有出售手机业务的计划

OPPO A55首发联发科天玑700芯片 1499元开启预售

1月25日消息,OPPO A55在京东开启预售,首销期间优惠100元,到手价1499元,有轻快蓝、气....
的头像 工程师邓生 发表于 01-25 15:30 113次 阅读
OPPO A55首发联发科天玑700芯片 1499元开启预售

三星、苹果瞄准Tag新商机:手机硬件早已提前就位

随着三星 Galaxy SmartTag 与 Galaxy SmartTag + 的正式发布,以及苹....
的头像 璟琰乀 发表于 01-25 15:27 139次 阅读
三星、苹果瞄准Tag新商机:手机硬件早已提前就位

苹果AR眼镜可能不是给消费者准备的

苹果正在研发 AR 眼镜,早已是公开的秘密。消费者对这个动作最先有感知的,是iPad Pro 和 i....
的头像 如意 发表于 01-25 15:15 82次 阅读
苹果AR眼镜可能不是给消费者准备的

因汽车需求飙升,各大芯片制造商正在提高半导体价格

据国外媒体报道,由于汽车需求飙升,日本半导体巨头瑞萨电子、荷兰芯片制造商恩智浦半导体(NXP Sem....
的头像 璟琰乀 发表于 01-25 15:04 195次 阅读
因汽车需求飙升,各大芯片制造商正在提高半导体价格

科技企业扎堆进军汽车领域,想要扮演什么角色?

华为造车了,百度造车了,微软造车了,科技企业“造车风”越刮越猛。汽车向前发展离不开信息技术的支撑,科....
的头像 我快闭嘴 发表于 01-25 14:55 259次 阅读
科技企业扎堆进军汽车领域,想要扮演什么角色?

寒武纪思元290芯片发布,具有三大关键亮点

寒武纪在官网披露7纳米AI训练芯片思元 290 智能芯片及加速卡、玄思1000智能加速器相关信息,并....
的头像 我快闭嘴 发表于 01-25 14:51 187次 阅读
寒武纪思元290芯片发布,具有三大关键亮点

三星半导体将面临着关键一战

去年十月,三星前任会长李健熙的去世在一定程度上影响了三星。不久前,三星电子副会长、三星集团实际掌门人....
的头像 如意 发表于 01-25 14:46 120次 阅读
三星半导体将面临着关键一战

5G叠加5nm为手机处理器带来哪些改变?手机芯片设计又面临哪些新挑战?

在刚刚过去的2020年,5nm处理器只在苹果iPhone12系列、华为Mate40以及年末发布的vi....
的头像 我快闭嘴 发表于 01-25 14:41 109次 阅读
5G叠加5nm为手机处理器带来哪些改变?手机芯片设计又面临哪些新挑战?

华为发布首款六核心芯片麒麟820E

华为麒麟芯片虽然面临空前严峻的困境,但仍然在一步一步地前行,新品也是接连不断。近日,华为悄然发布了n....
的头像 如意 发表于 01-25 14:37 112次 阅读
华为发布首款六核心芯片麒麟820E

骁龙888的单核功耗比骁龙865、骁龙855高了四成,骁龙870或成新选择

骁龙888功耗过高的问题已有越来越多的证据,而高通临时推出的骁龙870或许会取代骁龙888成为国产手....
的头像 Les 发表于 01-25 14:36 188次 阅读
骁龙888的单核功耗比骁龙865、骁龙855高了四成,骁龙870或成新选择

AMD与英特尔的差距在缩小?未来PC市场会怎么变?

英特尔与AMD的竞争在2021年将会愈演愈烈。德国最大的电商MindFactory曾统计:AMD锐龙....
的头像 我快闭嘴 发表于 01-25 14:34 103次 阅读
AMD与英特尔的差距在缩小?未来PC市场会怎么变?

芯片缺货导致多家车企宣布停工

全球的各大车企,想过会因各种原因停产,但是肯定没有想到,竟然会因为缺少汽车芯片停产,而且停产规模巨大....
的头像 如意 发表于 01-25 14:25 2388次 阅读
芯片缺货导致多家车企宣布停工

微软新系统已适应多种电子设备

经过大神们的一番努力,已经有手机成功运行了Windows 10X。
的头像 如意 发表于 01-25 13:59 179次 阅读
微软新系统已适应多种电子设备

韩国汽车制造商首次因芯片短缺而减产

据外媒报道,通用汽车韩国分公司近日表示,已取消原取定于 1 月 23 日在富平工厂的加班安排,以削减....
的头像 璟琰乀 发表于 01-25 13:59 136次 阅读
韩国汽车制造商首次因芯片短缺而减产

2021年,苹果Mac会怎么变?

去年的 M1 芯 MacBook,可以说是一个比 iPhone 12 惊喜还要大的「新品」。
的头像 我快闭嘴 发表于 01-25 13:53 184次 阅读
2021年,苹果Mac会怎么变?

5nm芯片为何集体翻车?

5nm是EUV(极紫外线)光刻机能实现的目前最先进芯片制程工艺,也是智能手机厂商争抢的宣传卖点,进入....
的头像 我快闭嘴 发表于 01-25 13:45 182次 阅读
5nm芯片为何集体翻车?

这颗只有巴掌大的卫星,可快速绕地球飞行检测辐射

美国路易斯安那大学拉斐特分校的学生制造了一颗名为 CAPE-3 的微型卫星,并搭载他们自己设计制造的....
的头像 璟琰乀 发表于 01-25 13:39 88次 阅读
这颗只有巴掌大的卫星,可快速绕地球飞行检测辐射

紫光同芯宣布安全芯片操作系统麟铠正式发布

1 月 25 日消息,紫光同芯宣布与支付产品供应商金邦达,联合研发的安全芯片操作系统麟铠正式发布。 ....
的头像 璟琰乀 发表于 01-25 13:35 281次 阅读
紫光同芯宣布安全芯片操作系统麟铠正式发布

传三星正在开发新款Exynos芯片组

三星现在不断的在芯片方面发力,前不久三星发布了三星Exynos 2100旗舰芯片,虽然该芯片在纯CP....
的头像 我快闭嘴 发表于 01-25 12:15 189次 阅读
传三星正在开发新款Exynos芯片组

荣耀已与高通、联发科达成合作关系

自从荣耀与华为分家后,荣耀手机芯片问题就成为用户关注的焦点。根据媒体报道,荣耀因为与华为“断得彻底”....
的头像 我快闭嘴 发表于 01-25 12:06 345次 阅读
荣耀已与高通、联发科达成合作关系

日本芯片行业为何会衰落?

世纪50年代,受益于日本消费电子产品的巨大需求量,日本半导体行业快速崛起。并在上世纪八九十年代,迎来....
的头像 我快闭嘴 发表于 01-25 11:57 385次 阅读
日本芯片行业为何会衰落?

2018年开始部署汽车级芯片 高云AEC Q-100认证FPGA助力国内汽车市场

近年来,国际形势风云变幻,中美关系持续吃紧,半导体行业大事频发。受美国管制影响,从通信、工业、安防到....
的头像 Les 发表于 01-25 11:49 111次 阅读
2018年开始部署汽车级芯片 高云AEC Q-100认证FPGA助力国内汽车市场

因半导体短缺问题,全球汽车制造商正在关闭装配线

据消息,德国汽车制造商大众汽车发言人周日表示,正因半导体元件短缺造成的损失,与主要供应商就可能的索赔....
的头像 我快闭嘴 发表于 01-25 11:46 334次 阅读
因半导体短缺问题,全球汽车制造商正在关闭装配线

iPhone SE Plus或下半年发布

配置上,与现款iPhone SE2不同的设计思路,未来或将采用6.1英寸大小,但使用的是IPS屏幕,....
的头像 我快闭嘴 发表于 01-25 11:35 397次 阅读
iPhone SE Plus或下半年发布

苹果正研究让折叠屏手机拍出更好的照片

据外媒报道,此前有消息称苹果公司正在努力研发一款可折叠iPhone,可能会在2022年发布。而一项新....
的头像 如意 发表于 01-25 11:33 126次 阅读
苹果正研究让折叠屏手机拍出更好的照片

5nm芯片翻车,联发科成赢家

5nm对于手机厂商来说又是一个新的里程碑。因为工艺再次跨代升级,所以消费者对于它的性能和功耗都非常看....
的头像 我快闭嘴 发表于 01-25 10:40 196次 阅读
5nm芯片翻车,联发科成赢家

国内的电池包电量计有没有相关的芯片可用?我没有找到,哪个有推荐的,谢谢

国内的电池包电量计有没有相关的芯片可用?我没有找到,哪个有推荐的,谢谢 ...
发表于 01-25 09:41 0次 阅读
国内的电池包电量计有没有相关的芯片可用?我没有找到,哪个有推荐的,谢谢

哪位用过USB和SPI互转的芯片?

发表于 01-25 08:32 54次 阅读
哪位用过USB和SPI互转的芯片?

HX3003M入耳检测光学结构设计的方案详细说明

  HX3003M 是天易公司自行研发的一款高性能数字光学入耳检测传感器芯片。
发表于 01-25 08:00 5次 阅读
HX3003M入耳检测光学结构设计的方案详细说明

HM5936B电源管理芯片的数据手册免费下载

HM5936B是一款集成了锂电池充电管理,锂电池保护,DC-DC升压限流,3档风量可调风扇驱动功能于....
发表于 01-25 08:00 8次 阅读
HM5936B电源管理芯片的数据手册免费下载

如何选调光好低压差线性恒流芯片?选型教程H7310惠海半导体

在智能调光和外围要求越来越简洁的大势所趋下,低压线性恒流芯片的技术发展也紧跟着进步起来,在目前大部分的低压线性恒流芯片中...
发表于 01-23 09:57 93次 阅读
如何选调光好低压差线性恒流芯片?选型教程H7310惠海半导体

有大佬知道这两个IC的具体型号么

新手来报道 没有多少积分 还请大佬帮帮忙 谢谢! 我上传了两个芯片有大佬知道这两个ic的具体型号么! ...
发表于 01-21 10:08 46次 阅读
有大佬知道这两个IC的具体型号么

请问有没有线性恒流LED驱动芯片推荐?最大电流200ma左右。

请问有没有线性恒流LED驱动芯片推荐?最大电流200ma左右,最好带开关功能。在网上找了一圈都没有找到合适的,电流大点的就1...
发表于 01-19 20:59 101次 阅读
请问有没有线性恒流LED驱动芯片推荐?最大电流200ma左右。

请问这个西门子的芯片的datasheet谁有?这芯片干嘛用的?

发表于 01-16 19:34 202次 阅读
请问这个西门子的芯片的datasheet谁有?这芯片干嘛用的?

最受欢迎的移动操作系统1999-2019

视频里介绍了1999-2019这段时间,各大移动操作系统的占比 ...
发表于 01-08 13:47 101次 阅读
最受欢迎的移动操作系统1999-2019

【MTO-EV033开发板试用体验连载】性能好得令人发指

MTO-EV033开发板有坑:直接给VM上电,再从CLK输入矩形波,开发板是没法驱动步进电机,因为还需要给芯片各使能引脚接高...
发表于 01-04 15:25 101次 阅读
【MTO-EV033开发板试用体验连载】性能好得令人发指

这几款是什么芯片,请问谁有用过,请大侠指教下

发表于 12-31 09:03 565次 阅读
这几款是什么芯片,请问谁有用过,请大侠指教下

请问如下芯片是何芯片?如何替换

西屋取暖器数显控制板上用。
发表于 12-29 17:51 630次 阅读
请问如下芯片是何芯片?如何替换

STM805T/S/R STM805T/S/R3V主管

RST 输出 NVRAM监督员为外部LPSRAM 芯片使能选通(STM795只)用于外部LPSRAM( 7 ns最大值丙延迟) 手册(按钮)复位输入 200毫秒(典型值)吨 REC 看门狗计时器 - 1.6秒(典型值) 自动电池切换 在STM690 /795分之704/804分之802/八百零六分之八百零五监督员是自载装置,其提供微处理器监控功能与能力的非挥发和写保护外部LPSRAM。精密电压基准和比较监视器在V
发表于 05-20 16:05 75次 阅读
STM805T/S/R STM805T/S/R3V主管

FPF2290 过压保护负载开关

0具有低R ON 内部FET,工作电压范围为2.5 V至23 V.内部钳位电路能够分流±100 V的浪涌电压,保护下游元件并增强系统的稳健性。 FPF2290具有过压保护功能,可在输入电压超过OVP阈值时关断内部FET。 OVP阈值可通过逻辑选择引脚(OV1和OV2)选择。过温保护还可在130°C(典型值)下关断器件。 FPF2290采用完全“绿色”兼容的1.3mm×1.8mm晶圆级芯片级封装(WLCSP),带有背面层压板。 特性 电涌保护 带OV1和OV2逻辑输入的可选过压保护(OVP) 过温保护(OTP) 超低导通电阻,33mΩ 终端产品 移动 便携式媒体播放器 电路图、引脚图和封装图...
发表于 07-31 13:02 129次 阅读
FPF2290 过压保护负载开关

FTL75939 可配置负载开关和复位定时器

39既可作为重置移动设备的计时器,又可作为先进负载管理器件,用于需要高度集成解决方案的应用。若移动设备关闭,保持/ SR0低电平(通过按下开启键)2.3 s±20%能够开启PMIC。作为一个重置计时器,FTL11639有一个输入和一个固定延迟输出。断开PMIC与电池电源的连接400 ms±20%可生成7.5 s±20%的固定延迟。然后负荷开关再次打开,重新连接电池与PMIC,从而让PMIC按电源顺序进入。连接一个外部电阻到DELAY_ADJ引脚,可以自定义重置延迟。 特性 出厂已编程重置延迟:7.5 s 出厂已编程重置脉冲:400 ms 工厂自定义的导通时间:2.3 s 出厂自定义关断延迟:7.3 s 通过一个外部电阻实现可调重置延迟(任选) 低I CCT 节省与低压芯片接口的功率 关闭引脚关闭负载开关,从而在发送和保存过程中保持电池电荷。准备使用右侧输出 输入电压工作范围:1.2 V至5.5 V 过压保护:允许输入引脚> V BAT 典型R ON :21mΩ(典型值)(V BAT = 4.5 V时) 压摆率/浪涌控制,t R :2.7 ms(典型值) 3.8 A /4.5 A最大连续电流(JEDEC ...
发表于 07-31 13:02 227次 阅读
FTL75939 可配置负载开关和复位定时器

NCV8774 LDO稳压器 350 mA 低Iq

4是一款350 mA LDO稳压器。其坚固性使NCV8774可用于恶劣的汽车环境。超低静态电流(典型值低至18μA)使其适用于永久连接到需要具有或不具有负载的超低静态电流的电池的应用。当点火开关关闭时,模块保持活动模式时,此功能尤其重要。 NCV8774包含电流限制,热关断和反向输出电流保护等保护功能。 特性 优势 固定输出电压为5 V和3.3 V 非常适合为微处理器供电。 2%输出电压高达Vin = 40 V 通过负载突降维持稳压电压。 输出电流高达350 mA 我们广泛的汽车调节器产品组合允许您选择适合您应用的汽车调节器。 NCV汽车前缀 符合汽车现场和变更控制& AEC-Q100资格要求。 低压差 在低输入电压下维持输出电压调节(特别是在汽车起动过程中)。 超低静态电流18μA典型 符合最新的汽车模块要求小于100μA。 热关机 保护设备免受高温下的永久性损坏。 短路 保护设备不会因电流过大而在芯片上产生金属开路。 非常广泛的Cout和ESR稳定性值 确保任何类型的输出电容的稳定性。 车身控制模块 仪器和群集 乘员...
发表于 07-30 19:02 109次 阅读
NCV8774 LDO稳压器 350 mA 低Iq

NCV8674 LDO稳压器 350 mA 低压差 低Iq

4是一款精密5.0 V或12 V固定输出,低压差集成稳压器,输出电流能力为350 mA。仔细管理轻负载电流消耗,结合低泄漏过程,可实现30μA的典型静态电流。 输出电压精确到±2.0%,在满额定负载电流下最大压差为600 mV。内部保护,防止输入电源反转,输出过流故障和过高的芯片温度。无需外部组件即可启用这些功能。 特性 优势 5.0 V和12 V输出电压选项,输出精度为2.0%,在整个温度范围内 非常适合监控新的微处理器和通信节点 40 I OUT = 100 A时的最大静态电流 满足100μA最大模块汽车制造商点火关闭静态电流要求 350 mV时600 mV最大压差电压电流 在低输入电压下维持输出电压调节。 5.5 V至45 V的宽输入电压工作范围 维持甚至duri的监管ng load dump 内部故障保护 -42 V反向电压短路/过流热过载 节省成本和空间,因为不需要外部设备 AEC-Q100合格 满足汽车资格要求 应用 终端产品 发动机控制模块 车身和底盘 动力总成 汽车 电路图、引脚图和封装图...
发表于 07-30 18:02 85次 阅读
NCV8674 LDO稳压器 350 mA 低压差 低Iq

NCV8664C LDO稳压器 150 mA 低压差 低Iq

4C是一款精密3.3 V和5.0 V固定输出,低压差集成稳压器,输出电流能力为150 mA。仔细管理轻负载电流消耗,结合低泄漏过程,可实现22μA的典型静态电流。输出电压精确到±2.0%,在满额定负载电流下最大压差为600 mV。内部保护,防止输入电源反向,输出过流故障和过高的芯片温度。无需外部组件即可启用这些功能。 NCV8664C与NCV4264,NCV4264-2,NCV4264-2C引脚和功能兼容,当需要较低的静态电流时可以替换这些器件。 特性 优势 最大30μA静态电流100μA负载 符合新车制造商最大模块静态电流要求(最大100μA)。 极低压降600 mV(最大值)150 mA负载电流 可以在低输入电压下启动时运行。 保护: -42 V反向电压保护短路保护热过载保护 在任何汽车应用中都不需要外部元件来实现保护。 5.0 V和3.3V固定输出电压,输出电压精度为2% AEC-Q100 1级合格且PPAP能力 应用 终端产品 发动机控制模块 车身和底盘 动力总成 信息娱乐,无线电 汽车 电路图、引脚图和封装图...
发表于 07-30 18:02 160次 阅读
NCV8664C LDO稳压器 150 mA 低压差 低Iq

NCV8660B LDO稳压器 150 mA 低压差 低Iq

0B是一款精密极低Iq低压差稳压器。典型的静态电流低至28μA,非常适合需要低负载静态电流的汽车应用。复位和延迟时间选择等集成控制功能使其成为微处理器供电的理想选择。它具有5.0 V或3.3 V的固定输出电压,可在±2%至150 mA负载电流范围内调节。 特性 优势 固定输出电压为5 V或3.3 V 非常适合为微处理器供电。 2%输出电压,最高VBAT = 40 V 维持稳压电压装载转储。 输出电流高达150 mA 我们广泛的汽车调节器产品组合允许您选择适合您应用的汽车调节器。 延迟时间选择 为微处理器选择提供灵活性。 重置输出 禁止微处理器在低电压下执行未请求的任务。 汽车的NCV前缀 符合汽车网站和变更控制& AEC-Q100资格要求。 低压差 在低输入电压下维持输出电压调节(特别是在汽车起动过程中)。 典型值为28 uA的低静态电流 符合最新的汽车模块要求小于100uA。 热关机 保护设备免受高温下的永久性损坏。 短路 保护设备不会因电流过大而在芯片上产生金属开路。 在空载条件下稳定 将系统静态电流保持在最低限度。...
发表于 07-30 18:02 109次 阅读
NCV8660B LDO稳压器 150 mA 低压差 低Iq

NCV8665 LDO稳压器 150 mA 低压差 低Iq 高PSRR

5是一款精密5.0 V固定输出,低压差集成稳压器,输出电流能力为150 mA。仔细管理轻负载电流消耗,结合低泄漏过程,可实现30μA的典型静态接地电流。 NCV8665的引脚与NCV8675和NCV4275引脚兼容,当输出电流较低且需要非常低的静态电流时,它可以替代这些器件。输出电压精确到±2.0%,在满额定负载电流下最大压差为600 mv。它具有内部保护,可防止45 V输入瞬变,输入电源反转,输出过流故障和过高的芯片温度。无需外部组件即可启用这些功能。 特性 优势 5.0 V固定输出电压,输出电压精度为2%(3.3 V和2.5 V可根据要求提供) 能够提供最新的微处理器 最大40 A静态电流,负载为100uA 满足100μA最大模块汽车制造商点火关闭静态电流要求 保护: -42 V反向电压保护短路 在任何汽车应用中都不需要外部组件来启用保护。 AEC-Q100合格 符合自动资格认证要求 极低压降电压 应用 终端产品 发动机控制模块 车身和底盘 动力总成 汽车 电路图、引脚图和封装图...
发表于 07-30 17:02 133次 阅读
NCV8665 LDO稳压器 150 mA 低压差 低Iq 高PSRR

NCV8664 LDO稳压器 150 mA 低Iq

4是一款精密5.0 V固定输出,低压差集成稳压器,输出电流能力为150 mA。仔细管理轻负载电流消耗,结合低泄漏过程,可实现典型的22μA静态接地电流。输出电压精确到±2.0%,在满额定负载电流下最大压差为600 mV 。 内部保护,防止输入电源反转,输出过流故障和过高的芯片温度。无需外部组件即可启用这些功能。 NCV8664的引脚和功能与NCV4264和NCV4264-2兼容,当需要非常低的静态电流时,它可以替代这些部件。 特性 优势 负载100μA时最大30μA静态电流 会见新车制造商最大模块静态电流要求(最大100μA)。 保护: -42 V反向电压保护短路保护热过载保护 在任何汽车应用中都不需要外部组件来启用保护。 极低压降电压 可以在低输入电压下启动时运行。 5.0 V和3.3V固定输出电压,2%输出电压精度 AEC-Q100合格 汽车 应用 车身和底盘 动力总成 发动机控制模块 信息娱乐,无线电 电路图、引脚图和封装图...
发表于 07-30 17:02 153次 阅读
NCV8664 LDO稳压器 150 mA 低Iq

NCV8675 LDO稳压器 350 mA 低压差 低Iq 高PSRR

5是一款精密5.0 V和3.3 V固定输出,低压差集成稳压器,输出电流能力为350 mA。仔细管理轻负载电流消耗,结合低泄漏过程,可实现34μA的典型静态接地电流。 内部保护免受输入瞬态,输入电源反转,输出过流故障和芯片温度过高的影响。无需外部元件即可实现这些功能。 NCV8675引脚与NCV4275引脚兼容,当需要非常低的静态电流时,它可以替代该器件。对于D 2 PAK-5封装,输出电压精确到±2.0%,对于DPAK-5封装,输出电压精确到±2.5%,在满额定负载电流下,最大压差为600 mV。 特性 优势 5.0 V和3.3 V固定输出电压,输出电压精度为2%或2.5% 能够提供最新的微处理器 负载为100uA时最大34uA静态电流 满足100uA最大模块汽车制造商点火关闭静态电流要求 保护: -42 V反向电压保护短路 在任何汽车应用中都不需要外部组件来实现保护。 AEC-Q100 Qualifie d 符合自动资格认证要求 极低压降电压 应用 终端产品 发动机控制模块 车身和底盘 动力总成 汽车 电路图、引脚图和封装图...
发表于 07-30 16:02 122次 阅读
NCV8675 LDO稳压器 350 mA 低压差 低Iq 高PSRR

NCV4264-2 LDO稳压器 100 mA 低Iq 高PSRR

4-2功能和引脚与NCV4264引脚兼容,具有更低的静态电流消耗。其输出级提供100 mA,输出电压精度为+/- 2.0%。在100 mA负载电流下,最大压差为500 mV。它具有内部保护,可防止45 V输入瞬变,输入电源反转,输出过流故障和过高的芯片温度。无需外部组件即可启用这些功能。 特性 优势 最大60μA静态电流,负载为100μA 处于待机模式时可以节省电池寿命。 保护: - 42 V反向电压保护短路保护热过载保护 无需外部元件在任何汽车应用中都需要保护。 极低压差 可以在低输入电压下启动时运行。 5.0 V和3.3 V固定输出电压,输出电压精度为2% AEC-Q100合格 应用 终端产品 车身和底盘 动力总成 发动机控制模块 汽车 电路图、引脚图和封装图...
发表于 07-30 13:02 114次 阅读
NCV4264-2 LDO稳压器 100 mA 低Iq 高PSRR

NCV4264 LDO稳压器 100 mA 高PSRR

4是一款宽输入范围,精密固定输出,低压差集成稳压器,满载电流额定值为100 mA。输出电压精确到±2.0%,在100 mA负载电流下最大压差为500 mV。 内部保护免受45 V输入瞬变,输入电源反转,输出过流故障和过高的芯片温度。无需外部组件即可启用这些功能。 特性 优势 5.0 V和3.3 V固定输出电压和2.0%输出电压精度 严格的监管限制 非常低的辍学 可以在低输入电压下启动时运行。 保护: -42 V反向电压保护短路保护热过载保护 在任何汽车应用中都不需要外部组件来启用保护。 AEC-Q100合格 符合汽车资格标准 应用 终端产品 车身与底盘 动力总成 发动机控制模块 汽车 电路图、引脚图和封装图...
发表于 07-30 13:02 263次 阅读
NCV4264 LDO稳压器 100 mA 高PSRR

NCV4264-2C LDO稳压器 100 mA 低Iq 高PSRR

4-2C是一款低静态电流消耗LDO稳压器。其输出级提供100 mA,输出电压精度为+/- 2.0%。在100 mA负载电流下,最大压差为500 mV。它具有内部保护,可防止45 V输入瞬变,输入电源反转,输出过流故障和过高的芯片温度。无需外部组件即可启用这些功能。 特性 优势 最大60μA静态电流,负载为100μ 在待机模式下节省电池寿命。 极低压降500 mV( max)100 mA负载电流 可以在低输入电压下启动时运行。 故障保护: -42 V反向电压保护短路/过流保护热过载保护 在任何汽车应用中都不需要外部组件来启用保护。 5.0 V和3.3 V固定输出电压,输出电压精度为2%,在整个温度范围内 AEC-Q100合格 应用 终端产品 发动机控制模块 车身和底盘 动力总成 汽车 电路图、引脚图和封装图...
发表于 07-30 13:02 223次 阅读
NCV4264-2C LDO稳压器 100 mA 低Iq 高PSRR

NCV8772 LDO稳压器 350 mA 低Iq

2是350 mA LDO稳压器,集成了复位功能,专用于微处理器应用。其坚固性使NCV8772可用于恶劣的汽车环境。超低静态电流(典型值低至24μA)使其适用于永久连接到需要具有或不具有负载的超低静态电流的电池的应用。当点火开关关闭时,模块保持活动模式时,此功能尤其重要。 Enable功能可用于进一步降低关断模式下的静态电流至1μA。 NCV8772包含电流限制,热关断和反向输出电流保护等保护功能。 特性 优势 固定输出电压为5 V 非常适合为微处理器供电。 2%输出电压上升至Vin = 40 V 通过负载突降维持稳压电压。 输出电流高达350 mA 我们广泛的汽车调节器产品组合允许您选择适合您应用的汽车调节器。 RESET输出 禁止微处理器在低电压下执行未请求的任务。 汽车的NCV前缀 符合汽车现场和变更控制& AEC-Q100资格要求。 低压差 在低输入电压下维持输出电压调节(特别是在汽车起动过程中)。 超低静态电流24μA典型 符合最新的汽车模块要求小于100μA。 热关机 保护设备免受高温下的永久性损坏。 短路 保护设备不会因电流过...
发表于 07-30 12:02 154次 阅读
NCV8772 LDO稳压器 350 mA 低Iq

NCV8770 LDO稳压器 350 mA 低Iq

0是350 mA LDO稳压器,集成了复位功能,专用于微处理器应用。其坚固性使NCV8770可用于恶劣的汽车环境。超低静态电流(典型值低至21μA)使其适用于永久连接到需要具有或不具有负载的超低静态电流的电池的应用。当点火开关关闭时,模块保持活动模式时,此功能尤其重要。 NCV8770包含电流限制,热关断和反向输出电流保护等保护功能。 特性 优势 固定输出电压为5 V 非常适合为微处理器供电。 2%输出电压上升至Vin = 40 V 通过负载突降维持稳压电压。 输出电流高达350 mA 我们广泛的汽车调节器产品组合允许您选择适合您应用的汽车调节器。 RESET输出 禁止微处理器在低电压下执行未请求的任务。 汽车的NCV前缀 符合汽车现场和变更控制& AEC-Q100资格要求。 低压差 在低输入电压下维持输出电压调节(特别是在汽车起动过程中)。 典型值为21μA的超低静态电流 符合最新的汽车模块要求小于100μA。 热关机 保护设备免受高温下的永久性损坏。 短路 保护设备不会因电流过大而在芯片上产生金属开路。 非常广泛的Cout和E...
发表于 07-30 12:02 124次 阅读
NCV8770 LDO稳压器 350 mA 低Iq

MC33160 线性稳压器 100 mA 5 V 监控电路

0系列是一种线性稳压器和监控电路,包含许多基于微处理器的系统所需的监控功能。它专为设备和工业应用而设计,为设计人员提供了经济高效的解决方案,只需极少的外部组件。这些集成电路具有5.0 V / 100 mA稳压器,具有短路电流限制,固定输出2.6 V带隙基准,低电压复位比较器,带可编程迟滞的电源警告比较器,以及非专用比较器,非常适合微处理器线路同步。 其他功能包括用于低待机电流的芯片禁用输入和用于过温保护的内部热关断。 这些线性稳压器采用16引脚双列直插式热片封装,可提高导热性。 特性 5.0 V稳压器输出电流超过100 mA 内部短路电流限制 固定2.6 V参考 低压复位比较器 具有可编程迟滞的电源警告比较器 未提交的比较器 低待机当前 内部热关断保护 加热标签电源包 无铅封装可用 电路图、引脚图和封装图...
发表于 07-30 06:02 114次 阅读
MC33160 线性稳压器 100 mA 5 V 监控电路

FAN53880 一个降压 一个升压和四个LDO PMIC

80是一款用于移动电源应用的低静态电流PMIC。 PMIC包含一个降压,一个升压和四个低噪声LDO。 特性 晶圆级芯片级封装(WLCSP) 可编程输出电压 软启动(SS)浪涌电流限制 可编程启动/降压排序 中断报告的故障保护 低电流待机和关机模式 降压转换器:1.2A,VIN范围: 2.5V至5.5V,VOUT范围:0.6V至3.3V 升压转换器:1.0A,VIN范围:2.5V至5.5V,VOUT范围:3.0V至5.7V 四个LDO:300mA,VIN范围:1.9V至5.5V,VOUT范围:0.8V至3.3V 应用 终端产品 电池和USB供电设备 智能手机 平板电脑 小型相机模块 电路图、引脚图和封装图...
发表于 07-30 04:02 290次 阅读
FAN53880 一个降压 一个升压和四个LDO PMIC

NCV5171 升压转换器 280 kHz 1.5 A 用于汽车

1 / 73产品是280 kHz / 560 kHz升压调节器,具有高效率,1.5 A集成开关。该器件可在2.7 V至30 V的宽输入电压范围内工作。该设计的灵活性使芯片可在大多数电源配置中运行,包括升压,反激,正激,反相和SEPIC。该IC采用电流模式架构,可实现出色的负载和线路调节,以及限制电流的实用方法。将高频操作与高度集成的稳压器电路相结合,可实现极其紧凑的电源解决方案。电路设计包括用于正电压调节的频率同步,关断和反馈控制等功能。这些器件与LT1372 / 1373引脚兼容,是CS5171和CS5173的汽车版本。 特性 内置过流保护 宽输入范围:2.7V至30V 高频允许小组件 最小外部组件 频率折返减少过流条件下的元件应力 带滞后的热关机 简易外部同步 集成电源开关:1.5A Guarnateed 引脚对引脚与LT1372 / 1373兼容 这些是无铅设备 用于汽车和其他应用需要站点和控制更改的ons CS5171和CS5173的汽车版本 电路图、引脚图和封装图...
发表于 07-30 00:02 124次 阅读
NCV5171 升压转换器 280 kHz 1.5 A 用于汽车

NCP161 LDO稳压器 450 mA 超高PSRR 超低噪声

是一款线性稳压器,能够提供450 mA输出电流。 NCP161器件旨在满足RF和模拟电路的要求,可提供低噪声,高PSRR,低静态电流和非常好的负载/线路瞬态。该器件设计用于1μF输入和1μF输出陶瓷电容。它有两种厚度的超小0.35P,0.65 mm x 0.65 mm芯片级封装(CSP),XDFN-4 0.65P,1 mm x 1 mm和TSOP5封装。 类似产品:
发表于 07-29 21:02 247次 阅读
NCP161 LDO稳压器 450 mA 超高PSRR 超低噪声

AR0521 CMOS图像传感器 5.1 MP 1 / 2.5

是一款1 / 2.5英寸CMOS数字图像传感器,有源像素阵列为2592(H)x 1944(V)。它通过滚动快门读数捕获线性或高动态范围模式的图像,并包括复杂的相机功能,如分档,窗口以及视频和单帧模式。它专为低亮度和高动态范围性能而设计,具有线路交错T1 / T2读出功能,可在ISP芯片中支持片外HDR。 AR0521可以产生非常清晰,锐利的数字图像,并且能够捕获连续视频和单帧,使其成为安全应用的最佳选择。 特性 5 Mp为60 fps,具有出色的视频性能 小型光学格式(1 / 2.5英寸) 1440p 16:9模式视频 卓越的低光性能 2.2 m背面照明像素技术 支持线路交错T1 / T2读出以启用ISP芯片中的HDR处理 支持外部机械快门 片上锁相环(PLL)振荡器 集成颜色和镜头阴影校正 精确帧率控制的从属模式 数据接口:♦HiSPi(SLVS) - 4个车道♦MIPI CSI-2 - 4车道 自动黑电平校准 高速可配置上下文切换 温度传感器 快速模式兼容2线接口 应用 终端产品 视频监控 高动态范围成像 安全摄像头 行动相机 车载DVR 电路图、引脚图和封装...
发表于 07-29 16:02 619次 阅读
AR0521 CMOS图像传感器 5.1 MP 1 / 2.5