0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于深度学习的回归方法YOLO系列简介

新机器视觉 来源:新机器视觉 作者:新机器视觉 2020-11-05 10:13 次阅读

YOLO系列是基于深度学习的回归方法。

RCNN, Fast-RCNN,Faster-RCNN是基于深度学习的分类方法。 YOLO官网:https://github.com/pjreddie/darknet

YOLOV1

论文下载:https://arxiv.org/abs/1506.02640代码下载:https://github.com/pjreddie/darknet 核心思想:将整张图片作为网络的输入(类似于Faster-RCNN),直接在输出层对BBox的位置和类别进行回归。

实现方法

将一幅图像分成SxS个网格(grid cell),如果某个object的中心 落在这个网格中,则这个网格就负责预测这个object。

每个网络需要预测B个BBox的位置信息和confidence(置信度)信息,一个BBox对应着四个位置信息和一个confidence信息。confidence代表了所预测的box中含有object的置信度和这个box预测的有多准两重信息:

其中如果有object落在一个grid cell里,第一项取1,否则取0。第二项是预测的bounding box和实际的groundtruth之间的IoU值。

每个bounding box要预测(x, y, w, h)和confidence共5个值,每个网格还要预测一个类别信息,记为C类。则SxS个网格,每个网格要预测B个bounding box还要预测C个categories。输出就是S x S x (5*B+C)的一个tensor。(注意:class信息是针对每个网格的,confidence信息是针对每个bounding box的。)

举例说明: 在PASCAL VOC中,图像输入为448x448,取S=7,B=2,一共有20个类别(C=20)。则输出就是7x7x30的一个tensor。整个网络结构如下图所示:

在test的时候,每个网格预测的class信息和bounding box预测的confidence信息相乘,就得到每个bounding box的class-specific confidence score:

等式左边第一项就是每个网格预测的类别信息,第二三项就是每个bounding box预测的confidence。这个乘积即encode了预测的box属于某一类的概率,也有该box准确度的信息。

得到每个box的class-specific confidence score以后,设置阈值,滤掉得分低的boxes,对保留的boxes进行NMS处理,就得到最终的检测结果。

损失函数

在实现中,最主要的就是怎么设计损失函数,让这个三个方面得到很好的平衡。作者简单粗暴的全部采用了sum-squared error loss来做这件事。这种做法存在以下几个问题:

第一,8维的localization error和20维的classification error同等重要显然是不合理的;

第二,如果一个网格中没有object(一幅图中这种网格很多),那么就会将这些网格中的box的confidence push到0,相比于较少的有object的网格,这种做法是overpowering的,这会导致网络不稳定甚至发散。

解决办法:

更重视8维的坐标预测,给这些损失前面赋予更大的loss weight。

对没有object的box的confidence loss,赋予小的loss weight。

有object的box的confidence loss和类别的loss的loss weight正常取1。

对不同大小的box预测中,相比于大box预测偏一点,小box预测偏一点肯定更不能被忍受的。而sum-square error loss中对同样的偏移loss是一样。 为了缓和这个问题,作者用了一个比较取巧的办法,就是将box的width和height取平方根代替原本的height和width。这个参考下面的图很容易理解,小box的横轴值较小,发生偏移时,反应到y轴上相比大box要大。(也是个近似逼近方式)

一个网格预测多个box,希望的是每个box predictor专门负责预测某个object。具体做法就是看当前预测的box与ground truth box中哪个IoU大,就负责哪个。这种做法称作box predictor的specialization。 最后整个的损失函数如下所示:

这个损失函数中:

只有当某个网格中有object的时候才对classification error进行惩罚。

只有当某个box predictor对某个ground truth box负责的时候,才会对box的coordinate error进行惩罚,而对哪个ground truth box负责就看其预测值和ground truth box的IoU是不是在那个cell的所有box中最大。

其他细节,例如使用激活函数使用leak RELU,模型用ImageNet预训练等等

缺点

由于输出层为全连接层,因此在检测时,YOLO训练模型只支持与训练图像相同的输入分辨率。

虽然每个格子可以预测B个bounding box,但是最终只选择只选择IOU最高的bounding box作为物体检测输出,即每个格子最多只预测出一个物体。当物体占画面比例较小,如图像中包含畜群或鸟群时,每个格子包含多个物体,但却只能检测出其中一个。这是YOLO方法的一个缺陷。

YOLO loss函数中,大物体IOU误差和小物体IOU误差对网络训练中loss贡献值接近(虽然采用求平方根方式,但没有根本解决问题)。因此,对于小物体,小的IOU误差也会对网络优化过程造成很大的影响,从而降低了物体检测的定位准确性。

YOLOv2(YOLO9000)

文章提出了一种新的训练方法–联合训练算法,这种算法可以把这两种的数据集混合到一起。使用一种分层的观点对物体进行分类,用巨量的分类数据集数据来扩充检测数据集,从而把两种不同的数据集混合起来。 联合训练算法的基本思路就是:同时在检测数据集和分类数据集上训练物体检测器(Object Detectors ),用检测数据集的数据学习物体的准确位置,用分类数据集的数据来增加分类的类别量、提升健壮性。YOLO9000就是使用联合训练算法训练出来的,他拥有9000类的分类信息,这些分类信息学习自ImageNet分类数据集,而物体位置检测则学习自COCO检测数据集。

改进

Batch Normalization使用Batch Normalization对网络进行优化,让网络提高了收敛性,同时还消除了对其他形式的正则化(regularization)的依赖。通过对YOLO的每一个卷积层增加Batch Normalization,最终使得mAP提高了2%,同时还使model正则化。使用Batch Normalization可以从model中去掉Dropout,而不会产生过拟合。High resolution classifier目前业界标准的检测方法,都要先把分类器(classifier)放在ImageNet上进行预训练。从Alexnet开始,大多数的分类器都运行在小于256*256的图片上。而现在YOLO从224*224增加到了448*448,这就意味着网络需要适应新的输入分辨率。

为了适应新的分辨率,YOLO v2的分类网络以448*448的分辨率先在ImageNet上进行Fine Tune,Fine Tune10个epochs,让网络有时间调整他的滤波器(filters),好让其能更好的运行在新分辨率上,还需要调优用于检测的Resulting Network。最终通过使用高分辨率,mAP提升了4%。Convolution with anchor boxesYOLOV1包含有全连接层,从而能直接预测Bounding Boxes的坐标值。Faster R-CNN的方法只用卷积层与Region Proposal Network来预测Anchor Box的偏移值与置信度,而不是直接预测坐标值。作者发现通过预测偏移量而不是坐标值能够简化问题,让神经网络学习起来更容易。

所以最终YOLO去掉了全连接层,使用Anchor Boxes来预测 Bounding Boxes。作者去掉了网络中一个Pooling层,这让卷积层的输出能有更高的分辨率。收缩网络让其运行在416*416而不是448*448。由于图片中的物体都倾向于出现在图片的中心位置,特别是那种比较大的物体,所以有一个单独位于物体中心的位置用于预测这些物体。YOLO的卷积层采用32这个值来下采样图片,所以通过选择416*416用作输入尺寸最终能输出一个13*13的Feature Map。

使用Anchor Box会让精确度稍微下降,但用了它能让YOLO能预测出大于一千个框,同时recall达到88%,mAP达到69.2%。Dimension clusters之前Anchor Box的尺寸是手动选择的,所以尺寸还有优化的余地。为了优化,在训练集(training set)Bounding Boxes上跑了一下k-means聚类,来找到一个比较好的值。 如果我们用标准的欧式距离的k-means,尺寸大的框比小框产生更多的错误。因为我们的目的是提高IOU分数,这依赖于Box的大小,所以距离度量的使用:

通过分析实验结果(Figure 2),左图:在model复杂性与high recall之间权衡之后,选择聚类分类数K=5。右图:是聚类的中心,大多数是高瘦的Box。 Table1是说明用K-means选择Anchor Boxes时,当Cluster IOU选择值为5时,AVG IOU的值是61,这个值要比不用聚类的方法的60.9要高。选择值为9的时候,AVG IOU更有显著提高。总之就是说明用聚类的方法是有效果的。

Direct location prediction

用Anchor Box的方法,会让model变得不稳定,尤其是在最开始的几次迭代的时候。大多数不稳定因素产生自预测Box的(x,y)位置的时候。按照之前YOLO的方法,网络不会预测偏移量,而是根据YOLO中的网格单元的位置来预测坐标,这就让Ground Truth的值介于0到1之间。而为了让网络的结果能落在这一范围内,网络使用一个 Logistic Activation来对于网络预测结果进行限制,让结果介于0到1之间。网络在每一个网格单元中预测出5个Bounding Boxes,每个Bounding Boxes有五个坐标值tx,ty,tw,th,t0,他们的关系见下图(Figure3)。假设一个网格单元对于图片左上角的偏移量是cx,cy,Bounding Boxes Prior的宽度和高度是pw,ph,那么预测的结果见下图右面的公式:

因为使用了限制让数值变得参数化,也让网络更容易学习、更稳定。Fine-Grained FeaturesYOLO修改后的Feature Map大小为13*13,这个尺寸对检测图片中尺寸大物体来说足够了,同时使用这种细粒度的特征对定位小物体的位置可能也有好处。Faster R-CNN、SSD都使用不同尺寸的Feature Map来取得不同范围的分辨率,而YOLO采取了不同的方法,YOLO加上了一个Passthrough Layer来取得之前的某个26*26分辨率的层的特征。

这个Passthrough layer能够把高分辨率特征与低分辨率特征联系在一起,联系起来的方法是把相邻的特征堆积在不同的Channel之中,这一方法类似与Resnet的Identity Mapping,从而把26*26*512变成13*13*2048。YOLO中的检测器位于扩展后(expanded )的Feature Map的上方,所以他能取得细粒度的特征信息,这提升了YOLO 1%的性能。Multi-ScaleTraining作者希望YOLO v2能健壮的运行于不同尺寸的图片之上,所以把这一想法用于训练model中。 区别于之前的补全图片的尺寸的方法,YOLO v2每迭代几次都会改变网络参数。

每10个Batch,网络会随机地选择一个新的图片尺寸,由于使用了下采样参数是32,所以不同的尺寸大小也选择为32的倍数{320,352…..608},最小320*320,最大608*608,网络会自动改变尺寸,并继续训练的过程。 这一政策让网络在不同的输入尺寸上都能达到一个很好的预测效果,同一网络能在不同分辨率上进行检测。当输入图片尺寸比较小的时候跑的比较快,输入图片尺寸比较大的时候精度高,所以你可以在YOLO v2的速度和精度上进行权衡。 Figure4,Table 3:在voc2007上的速度与精度

YOLOV3

YOLO v3的模型比之前的模型复杂了不少,可以通过改变模型结构的大小来权衡速度与精度。 速度对比如下:

简而言之,YOLOv3 的先验检测(Prior detection)系统将分类器或定位器重新用于执行检测任务。他们将模型应用于图像的多个位置和尺度。而那些评分较高的区域就可以视为检测结果。此外,相对于其它目标检测方法,我们使用了完全不同的方法。我们将一个单神经网络应用于整张图像,该网络将图像划分为不同的区域,因而预测每一块区域的边界框和概率,这些边界框会通过预测的概率加权。我们的模型相比于基于分类器的系统有一些优势。它在测试时会查看整个图像,所以它的预测利用了图像中的全局信息。与需要数千张单一目标图像的 R-CNN 不同,它通过单一网络评估进行预测。这令 YOLOv3 非常快,一般它比 R-CNN 快 1000 倍、比 Fast R-CNN 快 100 倍。

改进之处

多尺度预测 (类FPN)

更好的基础分类网络(类ResNet)和分类器 darknet-53,见下图。

分类器-类别预测。

YOLOv3不使用Softmax对每个框进行分类,主要考虑因素有两个:

Softmax使得每个框分配一个类别(score最大的一个),而对于Open Images这种数据集,目标可能有重叠的类别标签,因此Softmax不适用于多标签分类。

Softmax可被独立的多个logistic分类器替代,且准确率不会下降。

分类损失采用binary cross-entropy loss。

多尺度预测

每种尺度预测3个box, anchor的设计方式仍然使用聚类,得到9个聚类中心,将其按照大小均分给3个尺度.

尺度1: 在基础网络之后添加一些卷积层再输出box信息.

尺度2: 从尺度1中的倒数第二层的卷积层上采样(x2)再与最后一个16x16大小的特征图相加,再次通过多个卷积后输出box信息.相比尺度1变大两倍.

尺度3: 与尺度2类似,使用了32x32大小的特征图.

参见网络结构定义文件https://github.com/pjreddie/darknet/blob/master/cfg/yolov3.cfg 基础网络 Darknet-53

darknet-53

仿ResNet, 与ResNet-101或ResNet-152准确率接近,但速度更快.对比如下:

主干架构的性能对比

检测结构如下:

YOLOv3在mAP@0.5及小目标APs上具有不错的结果,但随着IOU的增大,性能下降,说明YOLOv3不能很好地与ground truth切合.

边框预测

图 2:带有维度先验和定位预测的边界框。我们边界框的宽和高以作为离聚类中心的位移,并使用 Sigmoid 函数预测边界框相对于滤波器应用位置的中心坐标。 仍采用之前的logis,其中cx,cy是网格的坐标偏移量,pw,ph是预设的anchor box的边长.最终得到的边框坐标值是b*,而网络学习目标是t*,用sigmod函数、指数转换。优点

快速,pipline简单.

背景误检率低。

通用性强。YOLO对于艺术类作品中的物体检测同样适用。它对非自然图像物体的检测率远远高于DPM和RCNN系列检测方法。

但相比RCNN系列物体检测方法,YOLO具有以下缺点:

识别物体位置精准性差。

召回率低。在每个网格中预测两个box这种约束方式减少了对同一目标的多次检测(R-CNN使用的region proposal方式重叠较多),相比R-CNN使用Selective Search产生2000个proposal(RCNN测试时每张超过40秒),yolo仅使用7x7x2个.

YOLOV4

YOLOv4: Optimal Speed and Accuracy of Object Detection 论文:https://arxiv.org/abs/2004.10934 代码:https://github.com/AlexeyAB/darknet YOLOv4!

YOLOv4 在COCO上,可达43.5% AP,速度高达 65 FPS! YOLOv4的特点是集大成者,俗称堆料。但最终达到这么高的性能,一定是不断尝试、不断堆料、不断调参的结果,给作者点赞。下面看看堆了哪些料:

Weighted-Residual-Connections (WRC)

Cross-Stage-Partial-connections (CSP)

Cross mini-Batch Normalization (CmBN)

Self-adversarial-training (SAT)

Mish-activation

Mosaic data augmentation

CmBN

DropBlock regularization

CIoU loss

本文的主要贡献如下: 1. 提出了一种高效而强大的目标检测模型。它使每个人都可以使用1080 Ti或2080 Ti GPU 训练超快速和准确的目标检测器(牛逼!)。 2. 在检测器训练期间,验证了SOTA的Bag-of Freebies 和Bag-of-Specials方法的影响。 3. 改进了SOTA的方法,使它们更有效,更适合单GPU训练,包括CBN [89],PAN [49],SAM [85]等。文章将目前主流的目标检测器框架进行拆分:input、backbone、neck 和 head. 具体如下图所示:

对于GPU,作者在卷积层中使用:CSPResNeXt50 / CSPDarknet53

对于VPU,作者使用分组卷积,但避免使用(SE)块-具体来说,它包括以下模型:EfficientNet-lite / MixNet / GhostNet / MobileNetV3

作者的目标是在输入网络分辨率,卷积层数,参数数量和层输出(filters)的数量之间找到最佳平衡。 总结一下YOLOv4框架:

Backbone:CSPDarknet53

Neck:SPP,PAN

Head:YOLOv3

YOLOv4 =CSPDarknet53+SPP+PAN+YOLOv3 其中YOLOv4用到相当多的技巧:

用于backbone的BoF:CutMix和Mosaic数据增强,DropBlock正则化,Class label smoothing

用于backbone的BoS:Mish激活函数,CSP,MiWRC

用于检测器的BoF:CIoU-loss,CmBN,DropBlock正则化,Mosaic数据增强,Self-Adversarial 训练,消除网格敏感性,对单个ground-truth使用多个anchor,Cosine annealing scheduler,最佳超参数,Random training shapes

用于检测器的Bos:Mish激活函数,SPP,SAM,PAN,DIoU-NMS

看看YOLOv4部分组件:

感受一下YOLOv4实验的充分性(调参的艺术):

感受一下性能炸裂的YOLOv4实验结果:

YOLO v.s Faster R-CNN

1.统一网络:YOLO没有显示求取region proposal的过程。Faster R-CNN中尽管RPN与fast rcnn共享卷积层,但是在模型训练过程中,需要反复训练RPN网络和fast rcnn网络.相对于R-CNN系列的"看两眼"(候选框提取与分类),YOLO只需要Look Once. 2. YOLO统一为一个回归问题,而R-CNN将检测结果分为两部分求解:物体类别(分类问题),物体位置即bounding box(回归问题)。

参考

1. V1,V2,V3转载地址: https://blog.csdn.net/App_12062011/article/details/77554288 2. V4转载地址: https://mp.weixin.qq.com/s/Ua3T-DOuzmLWuXfohEiVFw

责任编辑:xj

原文标题:YOLO系列:V1,V2,V3,V4简介

文章出处:【微信公众号:新机器视觉】欢迎添加关注!文章转载请注明出处。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 数据
    +关注

    关注

    8

    文章

    6508

    浏览量

    87552
  • 深度学习
    +关注

    关注

    73

    文章

    5219

    浏览量

    119863
  • yolo2
    +关注

    关注

    0

    文章

    3

    浏览量

    2032

原文标题:​YOLO系列:V1,V2,V3,V4简介

文章出处:【微信号:vision263com,微信公众号:新机器视觉】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    基于YOLO技术的植物检测与计数

    利用Roboflow平台对数据进行有效的管理和标注。对于植物检测,使用实时目标检测能力强的YOLO方法YOLO通过将输入图像划分为网格并预测每个网格单元的边界框和类别概率,在不牺牲精度的情况下实现了令人印象深刻的检测速度。
    的头像 发表于 12-12 09:41 371次阅读
    基于<b class='flag-5'>YOLO</b>技术的植物检测与计数

    深度学习在人工智能中的 8 种常见应用

    深度学习简介深度学习是人工智能(AI)的一个分支,它教神经网络学习和推理。近年来,它解决复杂问题
    的头像 发表于 12-01 08:27 878次阅读
    <b class='flag-5'>深度</b><b class='flag-5'>学习</b>在人工智能中的 8 种常见应用

    深度学习的由来 深度学习的经典算法有哪些

    深度学习作为机器学习的一个分支,其学习方法可以分为监督学习和无监督学习。两种
    发表于 10-09 10:23 340次阅读
    <b class='flag-5'>深度</b><b class='flag-5'>学习</b>的由来 <b class='flag-5'>深度</b><b class='flag-5'>学习</b>的经典算法有哪些

    机器学习深度学习的区别

    机器学习深度学习的区别 随着人工智能技术的不断发展,机器学习深度学习已经成为大家熟知的两个术
    的头像 发表于 08-17 16:11 3261次阅读

    深度学习框架和深度学习算法教程

    了基于神经网络的机器学习方法深度学习算法可以分为两大类:监督学习和无监督学习。监督学习的基本
    的头像 发表于 08-17 16:11 695次阅读

    深度学习算法库框架学习

    深度学习算法库框架学习 深度学习是一种非常强大的机器学习方法,它可以用于许多不同的应用程序,例如
    的头像 发表于 08-17 16:11 428次阅读

    深度学习框架tensorflow介绍

    深度学习框架tensorflow介绍 深度学习框架TensorFlow简介 深度
    的头像 发表于 08-17 16:11 1369次阅读

    深度学习框架是什么?深度学习框架有哪些?

    深度学习框架是什么?深度学习框架有哪些?  深度学习框架是一种软件工具,它可以帮助开发者轻松快速
    的头像 发表于 08-17 16:03 1699次阅读

    什么是深度学习算法?深度学习算法的应用

    什么是深度学习算法?深度学习算法的应用 深度学习算法被认为是人工智能的核心,它是一种模仿人类大脑
    的头像 发表于 08-17 16:03 1437次阅读

    深度学习算法简介 深度学习算法是什么 深度学习算法有哪些

    深度学习算法简介 深度学习算法是什么?深度学习算法有
    的头像 发表于 08-17 16:02 6663次阅读

    基于深度学习的点云分割的方法介绍

      摘 要:点云分割是点云数据理解中的一个关键技术,但传统算法无法进行实时语义分割。近年来深度学习被应用在点云分割上并取得了重要进展。综述了近四年来基于深度学习的点云分割的最新工作,按
    发表于 07-20 15:23 0次下载

    MATLAB深度学习简介电子书

    深度学习是机器学习的一个类型,该类型的模型直接从图像、文本或声音中学习执行分类任务。通常使用神经网络架构实现深度
    发表于 05-29 09:16 1次下载

    GPU引领的深度学习

    早期的机器学习以搜索为基础,主要依靠进行过一定优化的暴力方法。但是随着机器学习逐渐成熟,它开始专注于加速技术已经很成熟的统计方法和优化问题。同时深度
    的头像 发表于 05-09 09:58 563次阅读

    智造之眼丨深度学习应用

    智造之眼®科学设计深度学习各应用流程,在尽量简化前期准备工作的基础上为客户提供稳定且准确的深度学习解决方案。
    的头像 发表于 05-04 16:55 457次阅读
    智造之眼丨<b class='flag-5'>深度</b><b class='flag-5'>学习</b>应用

    从FPGA说起的深度学习:数据并行性

    这是新的系列教程,在本教程中,我们将介绍使用 FPGA 实现深度学习的技术,深度学习是近年来人工智能领域的热门话题。
    的头像 发表于 05-04 11:22 785次阅读
    从FPGA说起的<b class='flag-5'>深度</b><b class='flag-5'>学习</b>:数据并行性