侵权投诉

半导体IP行业发展情况如何?

2020-11-04 14:40 次阅读

全球前十IP供应商主要来自美国和英国,还有少量来自以色列和中国台湾,为了更好地认知半导体IP行业未来发展空间和行业壁垒,我们有必要对全球业内公司和行业整体情况进行研究。

随着芯片复杂度以及芯片设计成本的提高,IP采用量进一步增大,单个芯片采用的IP数量将超过200个,全球IP行业具备一定的市场空间。同时随着全球集成电路产业链向中国大陆转移,中国大陆地区新设立的芯片设计公司五年复合增长率达到24.7%,规划中的芯片设计项目大幅增加,综合增速远超全球,给中国半导体IP行业带来了增长空间,芯原作为行业龙头,发展空间良好。

经过三十余年发展,半导体IP行业市场份额相对集中,行业前两大企业ARM和Synopsys占据了接近六成市场份额,该格局已经保持多年。行业前十中还有cadenceCEVARambus等公司位臵相对稳定,各自占据一部分市场,芯原和Achronix是为数不多新进入前十的公司。

本文将从半导体IP行业发展历史、行业的重要性与竞争壁垒、未来发展空间、全球竞争格局四个角度进行展开,深入分析半导体IP行业。

半导体IP行业发展情况如何

半导体IP通常也称作IP核(IPcore),此处IP也就是指知识产权(IntellectualProperty)。IP核就是一些可重复利用的、具有特定功能的集成电路模块。IP由于性能高、功耗优、成本适中、技术密集度高、知识产权集中、商业价值昂贵,已经逐渐成为集成电路设计产业的核心产业要素和竞争力体现。当今时代,芯片设计公司如果没有IP,将难以完成芯片设计,可以说半导体IP的诞生是半导体行业发展的必然。从市场的角度来理解,IP行业是半导体行业分工精细化的结果,降低了芯片设计的难度与成本;从技术的角度来理解,IP是EDA发展和芯片复杂化的结果,没有电子化的芯片设计就没有可以复用的芯片IP。

市场视角:半导体行业分工精细化,IP降低设计成本

在如今这个时代,各个产业的发展都伴随着全球产业链的分工合作,以降低综合成本,半导体产业也是如此。半导体行业的发展伴随着不断的产业转移、技术升级与分工精细化。这三个过程是同步进行且高度相关的,技术的升级使得芯片产品和半导体产业不断复杂化,因而分工也不断细化,分工的细化使得半导体产业链环节更多,这也为不同环节的全球转移和降低成本提供了条件。从历史发展进程来看,自20世纪60年代半导体产业在美国发源以来,全球半导体产业因产业链进一步细化和应用市场需求变化,经历了两次产业转移,并正在进行第三次产业转移。

半导体IP行业发展情况如何?

20世纪70年代起,美国将半导体系统装配、封装测试等利润含量较低的环节转移到日本等地区。日本半导体产业由此开始积累,并借助家用电子市场对半导体技术及产量的需求不断完善产业链,最终在家电领域实现突破,由此产生了半导体产业的第一次产业转移。该次转移成就了索尼、东芝、日立等知名企业。这期间,拥有芯片设计和生产能力的IDM(IntegratedDeviceManufacturer,设计、制造、封测一体化垂直整合型公司)得到快速发展。

20世纪80年代至90年代,因日本经济泡沫破灭、投资乏力等原因,日本的半导体产业开始没落。中国台湾的台积电和联电两家晶圆厂的诞生,推动美国、日本半导体产业由IDM模式逐渐转变为Fabless模式(Fabless是Fabrication(制造)和less(无)的组合,指没有制造业务,只专注于设计的模式)。在半导体应用从家电到个人计算机的转型过程中,中国台湾着重发展半导体制造技术,在半导体产业链中占据了关键地位,韩国则聚焦存储技术,由此产生了半导体产业的第二次转移。该次转移成就了中国台湾的台积电和联电,韩国的三星、海力士等企业。与此同时,芯片设计公司和晶圆厂之间的技术衔接与匹配的需求,首次催生了芯片设计服务行业的诞生。

21世纪起,随着个人计算机产业向手机产业迈进,终端产品更加复杂多样,芯片设计难度快速提升,研发资源和成本持续增加,促使全球半导体产业分工继续细化,芯片设计产业进一步拆分出半导体IP产业,而芯片设计服务产业的服务范围也进一步扩大。同时,中国大陆的半导体产业经历了低端组装和制造承接、长期的技术引进和消化吸收、高端人才培育等较长的时间周期,逐步完成了原始积累,并以国家战略及政策为驱动力,推动了全产业链的高速发展。

随着智慧物联网时代的到来,以及产业发展环境完善、人才回流、政策支持、资本青睐等众多因素,中国大陆的半导体产业得以在众多领域实现快速与全面布局,正逐步驱使全球半导体产业从韩国、中国台湾向中国大陆转移,即第三次转移。该次转移促进了以ARM、新思科技、铿腾电子、芯原、创意电子、智原等为代表的半导体IP供应商和芯片设计服务提供商的快速发展,也推动了中国大陆集成电路产业相关企业的成长,包括以中芯国际、长电科技等为代表的晶圆厂和封测厂,以及以华为海思、紫光展锐等为代表的芯片设计公司。

随着产业分工精细化与不断转移的过程,如今半导体产业的分工已经高度明确,上中下游明晰。如今,集成电路设计产业的参与者可以细分为集成电路设计公司,以及其上游的EDA工具供应商、半导体IP供应商和设计服务供应商等。本报告主要研究的IP行业就处在半导体产业链的上游。产业链上游主要包括EDA工具与IP、设计服务、半导体加工设备和材料等;中游是狭义上的半导体行业,即芯片设计、制造和封装测试环节;下游则是终端系统厂商,负责系统集成,利用芯片产品生产出电子设备。

根据半导体产业三次转移的趋势,芯片设计公司需要快速响应市场,并满足其芯片产品的低成本、低风险、敏捷设计的需求。目前集成电路产业正处于快速发展期,智慧物联网、人工智能、5G等新兴产业的涌现推动着先进工艺节点的快速发展,同时也驱使着芯片设计产业的快速升级。产业升级带来成本、风险和设计难度等的提升,促使产业链按专业来分工细化,推动了轻设计产业模式的发展。集成电路产业具有从Fabless模式向轻设计模式转移的基础。

轻设计(Design-Lite)是芯原通过观察全球半导体产业第三次转移以及集成电路产业技术升级的历程,总结出来的芯片设计公司的新运营趋势。与目前相对“重设计”的Fabless模式不同,在轻设计模式下,芯片设计公司将专注于芯片定义、芯片架构、软件/算法,以及市场营销等,将芯片前端和后端设计,量产管理等全部或部分外包给设计服务公司,以及更多地采用半导体IP,减少运营支出,实现轻量化运营。轻设计时代,半导体IP成为新的核心要素。

技术视角:EDA软件与硬件相互促进,电子化使IP复用成为可能

半导体IP是EDA发展到一定阶段的产物,没有电子化的芯片设计就没有可复用的IP。先进EDA工具辅助工程师设计更复杂、更强大的IC芯片,而更复杂的芯片又可以支持运行更先进的EDA软件,芯片设计行业就在这样的正向反馈中不断发展。而要设计足够复杂的芯片,就必须要有足够的IP储备,没有可利用的IP会让芯片设计任务难以完成。为了直观感受芯片设计的复杂度以及EDA和IP的重要性,并且了解EDA/IP与集成电路相互促进的发展关系,我们不妨选取集成电路发展史上几个典型案例来进行观察。

1958年,JackKilby发明了世界上第一个集成电路,这是一个基于锗的移相振荡器,其原理也十分简单,1959年获得了名为“MethodofMakingMiniaturizedElectronicCircuits”的美国专利,专利号US3261081。这个集成电路大小只有5*1.8*2.5cm(来源:NationalMuseumofAmericanHistory:JackKilby’sIntegratedCircuit),利用当时贝尔实验室开发出的扩散技术和物理气相沉积(PVD)技术制作完成(手工涂上黑蜡作为掩模,从而形成电路图案)。此后一段时间内的集成电路不仅是手工设计,甚至制作也可以通过手工(借助非自动设备)完成,因为晶体管数量少,设计并不复杂。显而易见,此时并不存在也并不需要EDA和IP。

1971年,Intel发布了世界第一款商用微处理器4004。比4004稍早,Intel还发布了4001型DRAM、4002型ROM和4003型寄存器。4001、4002、4003再加上4004就可以组成一个初等的计算机系统。4004芯片最初是为Busicom公司设计,用于生产其141-PF型计算器。其封装外部只有16个针脚,硅片大小只有3mm*4mm,包含约2250个晶体管,晶体管间距约10微米,主频只有108kHz,能够处理4bit数据运算,支持8位指令集以及12位地址。

从原理图中我们可以清晰地看出其逻辑门、SRAM单元等结构,这意味着电路结构仍然较为简单。而尽管还是如此原始的芯片,仅仅包含数千个晶体管,我们已经可以从其DieShot(集成电路内核照片)、掩膜、电路原理图中感受到其复杂性。在这一阶段,电路虽然比原始时期更加复杂,但仍然在人手工设计能力范围内,设计时通常采用人工设计集成电路图形,完成布线。此时已出现了光刻机,但掩模刻画还需要手工完成。

20世纪80年代则出现了CAE(计算机辅助工程),除了制图以外,还假如了电路功能和结构设计功能,能够绘制电路原理图,并进行自动布线和逻辑仿真。同时,这十年中较为重要的变化是出现了HDL(硬件描述语言),工程师可以用代码对集成电路功能进行描述,由软件将电路的逻辑自动转换成逻辑门和晶体管的结构,而不必完全依赖图形。现在应用最广泛的VerilogHDL和VHDL分别出现在1983和1982年。(来源:立鼎产业研究中心)。同时许多重要的EDA公司也在这十年间成立,例如1986年成立的Synopsys、1988年由两家公司合并而成的Cadence、1981年成立的MentorGraphics等。

20世纪90年代,EDA工具进入成熟期,功能基本完善,从前端的代码综合到后端的布局布线、逻辑分析再到掩膜版图形的生成都可以完成。这十年中,随着EDA工具的成熟,IP核产业也初步形成。1990年,ARM处理器设计部门从ARM公司中独立出来,独立后的ARM不再生产处理器,而是进行IP授权,这种模式来自于对MOSTechnology的学习。1994年Motorola发布的FlexCore系统(用来制作基于68000和PowerPC的定制微处理器)和1995年LSILogic公司为Sony公司设计的SoC,可能是基于IP(IntellectualProperty)核完成SoC设计的最早报导(来源:电子工程世界)。1996年,世界上最早的IP核标准组织VSIA成立,随后日本IPTC、韩国SIPAC等类似组织也先后成立。

这一阶段推出的芯片晶体管数量已经大大增加,例如1993年Intel推出的初代Pentium处理器使用的P5微架构已经使用了0.6微米制程,晶体管数量310万个,是4004的1378倍;2000年Pentium4处理器使用的Willamette微架构进化到180nm制程,有4200万个晶体管,是P5的13.55倍;2006年的双核core处理器则使用了65nm制程,2.91亿个晶体管;而如今第十代酷睿架构icelake已经采用了10nm制程,一个4核+64EU(核芯显卡处理单元)的芯片里具有46亿个晶体管,相当于P5的1484倍。到了这一阶段,芯片复杂度已经远超人脑的掌控范围,没有高效的EDA工具以及经过验证的IP核,芯片设计工作几乎不可能完成。

行业知名公司:IP行业ARM、Synopsys领头,其他设计公司也提供IP

半导体与芯片设计与IP行业经过长期发展,已经产生大量代表性公司,根据公司主营业务的不同大致可以分为几类。这些主营业务不同的公司IP来源往往也有所不同。IP的来源主要有四大类,分别是芯片设计公司自身积累、代工厂的积累、专业的IP公司和EDA厂商。目前业内公司基本覆盖了四大类型,其中代工厂提供的IP较少,其他三类较多。

主营IP业务且比较知名的包括ARM、Synopsys、Cadence、CEVA等公司,ARM占据移动端处理器IP市场90%以上,占据整个IP市场40%以上;Synopsys在各类接口芯片IP市场排名第一,例如USB、PCIe接口等;Cadence经过数次并购,并结合自家EDA软件,也成为IP领域一个主要玩家;CEVA则是DSPIP领域强势厂商,从1991年开始研发DSPIP,2010年DSPIP市场占有率达到78%。其他还有诸如GPU领域的Imagination、提供DRAM接口IP的Rambus、主营非易失性存储IP的eMemory和SST等公司。

其他诸如智原等公司虽然也有IP,但主业是芯片设计服务,与芯原的一站式芯片定制服务较为类似。此外一些半导体领域成熟芯片设计公司也提供IP,例如Xilinx、Broadcom、Microchip联发科等。具体产品比如Xilinx的MicroBlaze软核处理器等。

半导体IP行业的产业链壁垒到底在哪

IP的必要性:构建芯片大厦的砖瓦,加速芯片设计的合作方式

虽然随着工艺的进步,单个晶体管的生产成本不断下降,但涉及复杂度的增加还是使得芯片设计成本逐渐提高。根据IBS报告,以先进工艺节点处于主流应用时期的设计成本为例,工艺节点为28nm时,单颗芯片设计成本约为0.41亿美元,而工艺节点为7nm时,设计成本则快速升至约2.22亿美元。即使工艺节点达到成熟应用时期,设计成本大幅度下降的前提下,相较同一应用时期的上一代先进工艺节点,仍存在显著提升。较高的设计成本,给芯片设计公司带来了较大的设计挑战。

自上世纪90年代起,晶圆厂如台积电、联电等的发展,带动了整个集成电路设计业的发展。晶圆厂专业化和规模化的生产代工服务能力,可大幅降低芯片设计公司的固定成本开支,这种轻资产的模式降低了企业进入的门槛,并增加了企业设计的灵活性和市场反应速度。

近几年,全球排名前十的芯片设计公司的研发费用占营业收入比例大多维持在20%-30%。随着产业的升级,集成电路设计的成本和难度还将不断加大,要求企业具有更高的利润以支撑研发。轻设计的模式可大幅降低芯片设计公司的运营成本,使其得以专注于自身核心竞争力的发展,如市场需求挖掘、产品定义、差异化实现、精准营销等。

同时,随着芯片复杂度的逐渐增加,同样大小的芯片内部容纳的晶体管数量越来越多,芯片内部包含的功能也越来越多。以最常见的手机SoC为例,其中包含了CPU、GPU、RAM、基带、射频前端模块、调制解调器、ISP、NPU、DSP等诸多模块。这些模块如果都从头开发,将耗费巨量的时间和资金,使得产品开发变得不现实。

综上所述,先进工艺节点在提高芯片单位面积性能、降低单位成本的同时,也提升了芯片的设计成本和设计风险。高成本、高风险的设计投入使芯片设计公司在研发先进工艺节点的芯片产品时,需要有大规模的产销量支撑来平摊生产成本。芯片设计公司面临生产制造协同能力以及运营和市场管理能力的更高挑战,其设计工程师也将需要具备更多更广的专业技能、先进且扎实的设计实施能力。由于具备上述完备能力的企业较少,为降低设计风险和成本,芯片设计公司越来越多地寻求专业化的一站式芯片定制服务和使用经过验证的半导体IP。

半导体IP就像建筑行业中的砖瓦和预制板,有了这些已经制作好的材料,就可以很快搭建起一栋建筑;或者可以认为IP是建筑设计图,设计者利用这些现有的建筑设计图稍作修改,再加上自行设计的地下管线等结构,就可以迅速设计出一座城市。这种站在巨人肩膀上的思维在各行各业都有应用,比如游戏中场景的搭建往往也需要用到第三方供应商提供的素材,游戏开发商只需在现有素材的基础上进行调整与修改即可,如此可以大大加快游戏开发节奏。

半导体行业最佳案例就是移动端SoC。用在前代华为旗舰Mate20系列上的麒麟980芯片就是IP必要性的体现。麒麟980芯片中利用了4个ARM提供的Cortex-A76作为CPU大核,负责高性能计算,还有4个Cortex-A55小核用于低功耗日常任务计算,此外还有10个同样由ARM提供的MaliGPU核心,对于视频、游戏等应用至关重要。从DieShot中我们可以看到,ARM提供的IP核占据了麒麟980芯片相当大的面积,也为其提供了核心功能。此处完全体现了IP对于芯片设计的作用。此外,DieShot显示,麒麟980芯片中的MaliGPU核具有两种不同的布局形式,分为Layout1和Layout2,这是因为IP核具有灵活性,可以适应芯片设计厂商的不同需求。

IP核通常可以分为软核、硬核和固核,其中软核是用硬件描述语言(HDL)形式提供给用户的代码文件,通常经过一定的设计优化和功能验证,但不包含任何关于芯片的物理信息(例如使用特定代工厂的工艺、制程等),客户可以灵活调整进行二次开发设计;硬核则是已经完成物理层面设计的IP核,几乎每个晶体管的布局和工艺参数都已经确定,并且已经经过工艺验证,其提供给客户的形式是电路掩模版图和全套工艺文件,客户不必进行任何改动就可以直接使用,但灵活性较差,如客户需要升级到新的先进制程往往需要进行大规模调校;固核则介于软核和硬核之间,在软核的基础上进一步进行了门级电路综合和时序仿真等环节,通常以网表文件(一种描述了器件间连接关系的文本文件)的形式提供给用户。客户选用不同类型的IP核,就可以进行不同程度的调整,从而可以灵活而又快捷地进行芯片设计。

深度嵌入软硬件生态,产品体系构建护城河

IP行业通常存在两大类壁垒,其中在消费者相关的市场,软硬件生态起到决定性作用,兼容现有生态是先决条件,而后才是性能等因素的比拼;而在诸多消费者不直接可见的领域,软硬件生态提供的壁垒就十分有限,更多考量IP本身的性能、易用性、产品线全面性、服务质量等因素。

IP行业最大的壁垒就是软硬件生态规模壁垒,当一套软硬件生态体系占据优势地位后,后来者往往无法在同一领域对其构成挑战。IT行业普遍存在赢者通吃的现象,不论软件领域还是硬件领域都是如此。应用软件行业的赢者通吃通常有网络效应等原因,具有明显的规模效应,导致领先者形成正反馈,最终垄断市场,后进入者由于难以突破用户规模的壁垒,通常难以在同一领域形成竞争,所以应用软件领域往往同一类型的软件只有少量巨头,除非有政治壁垒等不可控因素,除了龙头玩家以外,其他企业往往处境艰难。操作系统软件通常形成的垄断格局则主要是因为形成了应用软件生态。

而硬件行业形成该现象这一现象产生的原因通常是高额研发投入与技术领先性相互作用形成正反馈,因此半导体代工等行业往往只有少数寡头。同时,由于硬件指令集与软件存在兼容性问题,因此硬件垄断特性又受到软件垄断效应的强化,形成了牢不可破的软硬件生态。例如Intel在2001年推出的Itanium处理器由于使用了IA-64指令集,与x86软硬件生态不兼容,因而尽管在抛弃x86历史包袱后性能大幅提升,最终销量还是十分有限。IP行业是半导体产业链的上游,同样适用这一规律,例如ARMIP与AndroidiOS操作系统共同形成的软硬件生态已经占据垄断地位,庞大的应用软件体系及其用户群构成了这一生态体系的护城河。

但同时也并非所有领域都受到软硬件生态系统的影响,在一些零散且并非必须与全球用户兼容的领域,IP产品线的全面性、易用性、及服务的周到便捷性、产品性能与稳定性等都将成为影响胜负的因素。这类市场通常分布在toB领域,其共同特征是不与广大用户或应用软件直接接触,例如工控用到的MCU芯片、消费电子中的电源管理芯片、指纹识别芯片、各类军用与民用场景中的DSP芯片、各类接口芯片等。举例来说,在这一领域,Synopsys提供的接口芯片十分具有竞争力,例如USB、PCIe、HDMI以太网接口等。Synopsys由于占据EDA工具供应商的便利,并且提供的IP种类十分全面,可以为客户提供一站式解决服务,因而具有强大的竞争力。

半导体IP行业的市场空间怎么看

IP行业的市场空间与芯片设计行业高度相关,而芯片设计行业又与整个集成电路产业高度相关。因此,可以从集成电路产业入手,逐级细化,分别分析全球与中国IP行业的市场空间。

全球IP市场:IC设计市场十年复合增长率10.03%,处理器IP占比过半

IC及其设计行业:IC市场规模超过3000亿美元,IC设计市场突破千亿美元

随着超大规模集成电路设计、制造技术的发展,集成电路设计步入SoC时代,设计变得日益复杂。为了加快产品上市时间,以IP复用、软硬件协同设计和超深亚微米/纳米级设计为技术支撑的SoC已成为当今超大规模集成电路的主流方向,当前国际上绝大部分SoC都是基于多种不同IP组合进行设计的,IP在集成电路设计与开发工作中已是不可或缺的要素。

与此同时,随着先进制程的演进,线宽的缩小使得芯片中晶体管数量大幅提升,使得单颗芯片中可集成的IP数量也大幅增加。根据IBS报告,以28nm工艺节点为例,单颗芯片中已可集成的IP数量为87个。当工艺节点演进至7nm时,可集成的IP数量达到178个。单颗芯片可集成IP数量增多为更多IP在SoC中实现可复用提供新的空间,从而推动半导体IP市场进一步发展。

目前,IP行业规模虽然并不大,但其居于产业链上游,对全产业链创新具有重要作用,能够带动大量下游行业发展。根据Synopsys援引ESDAlliance、IPnest等组织的数据,2019年EDA与IP行业规模合计108亿美元,而其下游包括嵌入式软件、半导体代工、电子系统等产业,规模在万亿美元级别。

IBS数据显示,半导体IP市场将从2018年的46亿美元增长至2027年的101亿美元,年均复合增长率为9.13%。其中处理器IP市场预计在2027年达到62.55亿美元,2018年为26.20亿美元,年均复合增长率为10.15%;数模混合IP市场预计在2027年达到13.32亿美元,2018年为7.25亿美元,年均复合增长率为6.99%;射频IP市场预计在2027年达到11.24亿美元,2018年为5.42亿美元,年均复合增长率为8.44%。

按照2018全球IP行业市场规模与芯片设计行业规模的比例来看,IP在芯片设计整体营收中占比4.04%。未来随着IP使用量的提高,该比例可能有所提高。

未来发展方面,目前,半导体产业已进入继个人电脑和智能手机后的下一个发展周期,其最主要的变革力量源自于物联网、云计算、人工智能、大数据和5G通信等新应用的兴起。根据IBS报告,这些应用驱动着半导体市场将在2030年达到10,527.20亿美元,而2019年为4,008.81亿美元,年均复合增长率为9.17%。就具体终端应用而言,无线通信为最大市场,其中智能手机是关键产品;而包括电视、视听设备和虚拟家庭助理在内的消费类应用,为智能家居物联网提供了主要发展机会;此外,汽车电子市场持续增长,并以自动驾驶、下一代信息娱乐系统为主要发展方向。

规划方面,根据IBS统计,全球规划中的芯片设计项目涵盖有从250nm及以上到5nm及以下的各个工艺节点,因此晶圆厂的各产线都仍存在一定的市场需求,使得相关设计资源如半导体IP可复用性持续存在。28nm以上的成熟工艺占据设计项目的主要份额,含28nm在内的更先进工艺节点占比虽小但呈现出了稳步增长的态势。

中国在全球半导体市场规模中占比超过50%,自给率稳步提升

中国拥有全球最大的电子产品生产及消费市场,因此对集成电路产生了巨大的需求。ICInsights的数据显示,中国集成电路市场规模由2008年的510亿美元增长至2018年的1,570亿美元,年均复合增长率约为11.90%。未来中国的集成电路消费将随着大数据、云计算、物联网、人工智能、5G等新兴产业的进一步发展而持续增加。面对集成电路的巨大需求,国产集成电路的供给严重不足。2018年国产集成电路规模仅占中国集成电路市场规模的15.40%。由此表明,中国集成电路市场自给率偏低,对于进口的依赖程度较高。

根据IBS报告,中国在全球半导体市场规模中占比超过50%,并呈持续扩大趋势。2019年中国半导体市场规模为2,121.86亿美元,占全球市场的52.93%;预计到2030年,中国半导体市场规模将达到6,212.10亿美元,占全球市场高达59.01%,其中中国半导体市场的年均复合增长率达10.26%。这不仅因为中国是全球最大的电子设备生产基地,还因为中国的半导体技术和产业环境正在快速升级,并在5G、自动驾驶、人工智能和智慧物联网等领域先发布局。2018年中国半导体市场自给率12.2%,预计2027年有望达到31.2%,中国半导体产业具有较大发展空间。

芯片设计市场方面,我国的集成电路设计产业发展起点较低,但依靠着巨大的市场需求和良好的产业政策环境等有利因素,已成为全球集成电路设计产业的新生力量。从产业规模来看,我国大陆集成电路设计行业销售规模从2013年的809亿元增长至2018年的2,519亿元,年均复合增长率约为25.50%。

从全球地域分布分析,集成电路设计市场供应集中度非常高。根据ICInsights的报告显示,2018年美国集成电路设计产业销售额占全球集成电路设计业的68%,排名全球第一;中国台湾、中国大陆的集成电路设计企业的销售额占比分别为16%和13%,分列二、三位。与2010年时中国大陆本土的芯片设计公司的销售额仅占全球的5%的情况相比,中国大陆的集成电路设计产业已取得较大进步,并正在逐步发展壮大。

从产业链分工角度分析,随着集成电路产业的不断发展,芯片设计、制造和封测三个产业链中游环节的结构也在不断变化。2015年以前,芯片封测环节一直是产业链中规模占比最高的子行业,从2016年起,我国集成电路芯片设计环节规模占比超过芯片封测环节,成为三大环节中占比最高的子行业。

中国大陆已是全球最大的电子设备生产基地,因此也成为了集成电路器件最大的消费市场,而且其需求增速持续旺盛。根据IBS统计,2018年中国消费了全球53.27%的半导体元器件,预计到2027年中国将消费全球62.85%的半导体元器件。强劲的市场需求促使全球产能中心逐渐转移到中国大陆,进而扩大了大陆集成电路整体产业规模。根据SEMI的数据,2017~2020年,62座新晶圆厂将投入运营,其中26座在中国大陆,占比42%。

随着中国芯片制造及相关产业的快速发展,本土产业链逐步完善,为中国的初创芯片设计公司提供了国内晶圆制造支持,加上产业资金和政策的支持,以及人才的回流,中国的芯片设计公司数量快速增加。ICCAD公布的数据显示,自2016年以来,我国芯片设计公司数量大幅提升,2015年仅为736家,2019年则增长至1,780家,年均复合增长率为24.71%。

由于中国大陆芯片设计公司的不断崛起,本土设计项目在全球设计项目中的占比不断增高。根据IBS报告,2018年中国芯片设计公司规划中的设计项目数为1,797项,该数据预计将于2027年达到3,232项,年均复合增长率约为6.74%,而同期全球规划项目总数年均复合增长率仅为1.28%,甚至在去掉中国后,将从2018年的7502项减少到2027年的7184项。

综合各方面来看,中国IP行业发展速度与成长空间都比较良好。中国IC设计行业过去十年复合增长率25.5%远高于世界平均水平10.03%,并且中国半导体产业中芯片设计收入占比不断提高,公司数量近五年复合增长率高达24.71%,规划中的设计项目数量增速也显著高于全球其他地区。此外结合芯片设计行业IP运用量越来越大的情况,中国半导体IP行业成长空间更加广阔。

FinFET和FD-SOI齐头并进,Chiplet和开放指令集促进革新

技术趋势与市场空间同样重要,企业能否跟随甚至引领技术趋势决定了其未来发展。而近年来,对IP行业影响最大的三个技术趋势分别是新晶体管结构(FinFET/FD-SOI)、Chiplet和开放指令集。

新晶体管结构:FinFET小巧快速,FD-SOI稳定节能

当晶体管尺寸缩小到一定程度,短沟道效应变得十分明显,栅极对晶体管开关状态的控制力不足,漏电流变得难以控制,晶体管的进一步微缩遇到了障碍,传统的平面晶体管结构与体硅工艺技术(BulkSi)无法进一步突破,持续几十年的摩尔定律有失效的风险。

为继续延续摩尔定律的演进,两种集成电路新工艺节点技术的诞生打破了技术瓶颈,分别是FinFET和FD-SOI。这两种技术都是晶体管进一步缩小所需要发展的核心手段。FinFET称为鳍式场效应晶体管,因其外观凸起,类似鱼类的背鳍。FinFET又称为三栅极晶体管,栅极从三面把导电沟道包围起来,如同有三个栅极同步控制沟道,因而得名。这一技术大大增强了栅极对沟道的控制力,已成为如今先进数字电路的首选设计。FD-SOI全称FullyDepletedSiliconOnInsulator,全耗尽型绝缘体上硅,导电沟道极薄,下层为绝缘体,能够抑制漏电流。

两种技术相比较而言,FinFET相对具有更高的集成度和较快的速度,适合高性能以及大规模计算的产品;FD-SOI相对具有更好的模拟和射频性能,更低的软错误率,更优的能耗比,适合高性能射频芯片、物联网以及可穿戴设备等对功耗要求较高的产品。

Chiplet技术:预期2024年市场规模58亿美元,多核处理器成本可降低50%

随着集成电路技术的不断发展,芯片设计的复杂度不断提升。Chiplet(小芯片组)是一种可平衡计算性能与成本,提高设计灵活度,且提升IP模块经济性和复用性的新技术之一。Chiplet实现原理如同搭积木一样,把一些预先在工艺线上生产好的实现特定功能的芯片裸片,通过先进的集成技术(如3D集成等)集成封装在一起,从而形成一个系统芯片。Chiplet的实现开启了IP的新型复用模式,即硅片级别的IP复用。

不同功能的IP,如CPU、存储器、模拟接口等,可灵活选择不同的工艺分别进行生产,从而可以灵活平衡计算性能与成本,实现功能模块的最优配臵而不必受限于晶圆厂工艺。Chiplet的发展演进为IP供应商,尤其是具有芯片设计能力的IP供应商,拓展了商业灵活性和发展空间。

根据Omdia数据,2018年全球Chiplet市场规模为6.45亿美元,预计2024年市场规模可达58亿美元,年均复合增长率可达44%,并且有望逐渐扩展到整个半导体市场。

目前,Chiplet技术已经有大量应用,比如AMDZen架构之后的产品通常都采用了Chiplet的方式,Zen2系列更是全系列采用Chiplet技术;IntelSpringCrest神经网络芯片以及LakeField异构计算芯片等也都采用了Chiplet技术。

根据AMD测算,采用Chiplet后由于单个芯粒面积缩小,良率有明显提升,成本明显下降。对于多核处理器来说,大量核心都可以采用可复用的小型模块(CoreComplex,CCX)来进行复制,节约成本效果十分明显,并且核心数量越多Chiplet技术的作用就越大。

RISC-V支持者众多,MIPS/PowerPC积淀深厚

随着集成电路技术的不断发展,芯片设计的复杂度不断提升。Chiplet(小芯片组)是一种可平衡计算性能与成本,提高设计灵活度,且提升IP模块经济性和复用性的新技术之一。Chiplet实现原理如同搭积木一样,把一些预先在工艺线上生产好的实现特定功能的芯片裸片,通过先进的集成技术(如3D集成等)集成封装在一起,从而形成一个系统芯片。

Chiplet的实现开启了IP的新型复用模式,即硅片级别的IP复用。不同功能的IP,如CPU、存储器、模拟接口等,可灵活选择不同的工艺分别进行生产,从而可以灵活平衡计算性能与成本,实现功能模块的最优配臵而不必受限于晶圆厂工艺。Chiplet的发展演进为IP供应商,尤其是具有芯片设计能力的IP供应商,拓展了商业灵活性和发展空间。

根据Omdia数据,2018年全球Chiplet市场规模为6.45亿美元,预计2024年市场规模可达58亿美元,年均复合增长率可达44%,并且有望逐渐扩展到整个半导体市场。

目前,Chiplet技术已经有大量应用,比如AMDZen架构之后的产品通常都采用了Chiplet的方式,Zen2系列更是全系列采用Chiplet技术;IntelSpringCrest神经网络芯片以及LakeField异构计算芯片等也都采用了Chiplet技术。

根据AMD测算,采用Chiplet后由于单个芯粒面积缩小,良率有明显提升,成本明显下降。对于多核处理器来说,大量核心都可以采用可复用的小型模块(CoreComplex,CCX)来进行复制,节约成本效果十分明显,并且核心数量越多Chiplet技术的作用就越大。

开放指令集:RISC-V支持者众多,MIPS/PowerPC积淀深厚

目前最主要的开放指令集是RISC-V,此外MIPS和PowerPC指令集也加入了开放阵营。

RISC-V中的RISC是指精简指令集计算机(ReducedInstructionSetComputer),与复杂指令集计算机(ComplexInstructionSetComputer)相对。CISC提供各类复杂的高级指令,可以迅速完成一些复杂功能,如常用的x86指令集就是CISC体系的代表。CISC的复杂指令在计算能力稀缺的时期显得十分有用,而随着计算机能力的加强,CISC的弱点逐渐暴露,其指令不等长,因而无法很好地利用流水线技术增加指令吞吐量;同时指令集中大部分都不常用,却耗费了很多电路资源。针对CISC的问题,人们提出了RISC的概念,只保留最基本最常用的指令,同时使指令等长,手机芯片使用的ARM指令集就是RISC的典型代表。但如今CISC也逐渐吸取RISC的长处,进行指令解码,形成等长的微指令,RISC也吸取了部分复杂指令以提高效率,二者不再泾渭分明。

RISC-V的V表明这是第五代RISC指令集。历代RISC指令集都与第一代RISC的提出者、图灵奖得主DavidPatterson密不可分。RISC-V也是DavidPatterson所属研究团队的成员(KrsteAsanovic等)研发的,于2010年发布,完全开源。2015年,RISC-V基金会成立,旨在聚合全球力量共同构建RISC-V生态。到目前为止,业内已经有30多个基于RISC-V的开源CPU设计可供免费学习和使用,已经有越来越多的公司将RISC-V用在自己的芯片中,如西部数据、英伟达、华米等。未来RISC-V有望在物联网等场景中发挥关键作用。

中国在RISC-V的生态中地位较为重要,华为、中兴等都是最高级别的国际会员。同时中国还成立了量大RISC-V联盟,其中中国RISC-V联盟(CRVIC)由芯原股份担任首任理事长单位,成员包括兆易创新、紫光展锐、晶晨半导体等;中国开放指令生态联盟(CRVA)程艳包括北京大学、清华大学、华为、百度、腾讯、华米等高校和企业。

目前已有诸多企业发布了基于RISC-V的产品,例如阿里旗下平头哥发布的玄铁910、华米科技发布的可穿戴处理器“黄山一号”、紫光展锐的“春藤”系列等。

RISC-V的核心特点就是开源、轻量化、模块化。轻量化是指RISC-V没有太多历史包袱,不必为了兼容性增加复杂度,设计过程较为简单,非常适合应用于一些轻量级终端,例如智能手表等。而模块化则是RISC-V相比其他主流指令集较为特殊的一点,RISC-V指令集可以分为诸多子模块,采用该指令集的芯片不必实现所有指令,只需要实现最基本的整数指令集“I”系列即可,其他子集可以自行选择是否实现。但同时这些特性也给RISC-V带来了碎片化风险,未来可能存在兼容性问题。要解决这一问题,RISC-V生态迫切需要一个产业联盟。

另一个业内著名的精简指令集架构MIPS,于2018年底宣布开放其指令集架构,并成立MIPSOpen组织来管理和指导其发展和推广。MIPS虽然开放指令集架构较RISC-V有些晚,但由于其在工业界应用的历史较久,在网络链接、车载芯片等某些领域有其比较成熟的应用,拥有较完整的CPU指令集架构方面的专利组合,因此它的指令集的开放也受到了业界的欢迎。

2019年8月,IBM开源了其PowerPC指令集架构,并将OpenPowerFoundation转移到LinuxFoundation名下。PowerPC也是一种精简指令集架构的中央处理器,其历史悠久,在服务器和高性能计算领域,是除了X86指令集之外的较好选择。基于PowerPC的设计,因为有相对成熟的操作系统、数据库和中间件支持,在金融和超级计算领域,目前仍占有一定的市场份额。

RISC-V、MIPS和PowerPC相继开放其指令集架构,由于三种指令集各有自己的特色和典型应用领域,三者既有一定的竞争,也可相互依存。这种前所未有的指令集开源模式,给芯片设计者带来了广泛的自由和选择的机会,除了降低芯片的设计门槛,并从一定程度上降低芯片的设计成本之外,会给半导体工业带来前所未有的发展活力,促进半导体设计领域的重大创新和发展。

半导体IP行业的国内外竞争格局情况如何

一直以来,全球半导体IP行业都主要被海外公司把持,对主要的IP公司进行分析是十分有必要的。

全球前十IP供应商:总体格局稳定,市场由通用IP向专用IP转型

最近十多年来,全球前十大IP供应商有所变化,但格局大体保持稳定。根据Gartner的统计,2012年,全球前三大供应商分别是ARM、Synopsys和Imagination,其中ARM市占率40.1%,Synopsys市占率13.9%,Imagination市占率8.1%,当年MIPS被Imagination收购,其市占率为3.8%。同年微芯科技(Microchip)旗下的SiliconStorageTechnology(SST)收购了嵌入式存储IP供应商Novocell。

而到了2013年,Cadence收购了Tensilica与CosmicCircuit等公司,直接从前十开外挤进前四。2007年排名前十的非易失存储IP供应商VirageLogic于2010年被Synopsys收购,其产品主要包括SRAM、嵌入式NVM等。2007年另一家排名前十的FaradayTechnology(智原科技)逐渐转型做芯片设计服务,退出了IP供应商前十行列。

此后,2013年排名第七的Sonics于2019年被Facebook收购(来源:SemicoResearch)。2013年排名第十的Vivante(图芯科技)是华为K3V2处理器的GPUIP供应商,于2016年被芯原收购。2018年初,Synopsys收购了2017年排名前十的非易失存储IP供应商Kilopass,用以扩充其DesignWareIP库。通过Synopsys2010年收购VirageLogic与2018年收购Kilopass可以看出,Synopsys在强化其存储领域的IP实例,力求占据IC全产业链IP覆盖。

近年来,头部两家格局十分稳定,而曾经占据重要份额的Imagination在苹果中断合作后市场份额大幅下降。2017年营收增长7倍的Achronix公司和并购了Vivante的芯原则成为了榜单上势头较为强劲的公司。

从前十总份额来看,出现先上升后下降的趋势。前一阶段主要是由于智能手机浪潮,推动ARM份额快速上升,硬件生态集中化。而近年来由于物联网、Chiplet、开源指令集等新浪潮的出现,市场集中度下降,新公司进入市场,为国产IP供应商提供了新机会。

根据EENewsAnalog2018年的分析,在排名前十的IP供应商中,大部分厂商的营收表现都在下降。其中Arm市场份额已经连续两年下滑。在2017年,ARM的营收较之前一年下跌了6.8%。IPnest的EricEsteve表示,造成这样的结构可能有多种原因。第一个原因是SoftBank收购后会计政策发生了变化。第二种可能性是RISC-V处理器内核正在成为ARM处理器内核的可靠替代品。同样的下滑情况也出现在MIPS、Imagination、CEVA和Rambus这些老牌IP供应商身上。

IPnest的负责人EricEsteve表示,在2018年可以看到从通用IP(如CPU,DSP,基础IP)转向更多特定应用IP的趋势。对于CPU或DSP来说尤其如此,我们可以从Synopsys和Cadence与ARM和Andes(晶心科技,嵌入式CPUIP供应商)的对比中略见一斑。处理器和物理IP收入占总数的比例下降,但其他数字IP和互连IP则在增长。具体到企业层面,这反映出ARM,Imagination和MIPS的市场份额正在受到挤压。在高端,许可证持有者正在转向架构授权,以最大限度地降低许可费用;在低端,RISC-V开源处理器许可正在获得吸引力。同时在中间地带,机器学习和其他来源提供的其他专业架构越来越受欢迎。综上所述,虽然Arm仍然处在领先地位,但和巅峰时期相比已经出现了明显下降,Arm的市场占有率已经从约50%下降至40.8%。

综合以上企业主营业务以及趋势,我们可以对不同厂商的优劣势进行总结。其中经常排名前十的Rambus主营业务是DRAM相关IP,eMemory主营业务是NVM相关IP,与芯原股份业务重合度较低。

国内IP供应商:EDA公司兼营IP,芯动科技、锐成芯微等稳步发展

经过近年来国内集成电路设计产业的快速发展,设计产业的直接上游也涌现出了一批IP公司。其中有EDA公司,例如华大九天、芯愿景等;也有专做设计和IP的公司,除了芯原股份之外还有锐成芯微、芯动科技、和芯微电子(IPGoal)、苏州国芯、华夏芯、芯启源(corigine)、橙科微电子等;还有龙芯这类既做芯片又有IP授权的公司。
责任编辑:tzh

收藏 人收藏
分享:

评论

相关推荐

如何在FPGA芯片中支持不同的IO电平标准

上述一些I/O标准要求VCCO和/或VREF电压。这些电压由外部提供并连接到为IOB组(称为组)提供....
发表于 02-26 17:23 16次 阅读
如何在FPGA芯片中支持不同的IO电平标准

华为P50 Pro+外观渲染图曝光

在华为Mate X2发布后,不少“花粉”将目光焦距在了P50系列上。虽然官方一直在有意保密该机,但从....
的头像 我快闭嘴 发表于 02-26 17:22 1086次 阅读
华为P50 Pro+外观渲染图曝光

联发科能否稳坐全球芯片市场霸主之位?

受相关禁令的影响,华为旗下的智能手机、芯片以及5G海外业务遭到重创。
的头像 我快闭嘴 发表于 02-26 17:18 647次 阅读
联发科能否稳坐全球芯片市场霸主之位?

2021年2月芯片行业发展动态一览

2020年以来,芯片领域动态不断。国际端美国对我国芯片制裁打击不断,由此带来了国内市场的发展热潮,新....
的头像 我快闭嘴 发表于 02-26 17:06 966次 阅读
2021年2月芯片行业发展动态一览

恩智浦2020年总营收达到86亿美元

毕竟ASML是全球光刻机制造领域的霸主,常年垄断全球市场。值得一提的是,其实荷兰除了ASMl,还有一....
的头像 我快闭嘴 发表于 02-26 17:00 714次 阅读
恩智浦2020年总营收达到86亿美元

浅谈石墨烯对半导体行业的重要性

石墨是碳的一种同素异形体,由其剥离出的石墨烯被认为是一种未来革命性的材料。
的头像 我快闭嘴 发表于 02-26 16:51 411次 阅读
浅谈石墨烯对半导体行业的重要性

华为Mate X2是否值得高价入手?

华为新一代折叠屏手机——Mate X2正式亮相,发布会上,余承东表示,华为Mate X2准备了充足的....
的头像 我快闭嘴 发表于 02-26 16:45 448次 阅读
华为Mate X2是否值得高价入手?

中芯国际7nm工艺实现突破,斥资500亿赴京建厂

作为中国大陆第一晶圆巨头的中芯国际,代表着中国大陆芯片制造的最高水平。在国产替代的大潮下,中芯国际更....
的头像 我快闭嘴 发表于 02-26 16:39 506次 阅读
中芯国际7nm工艺实现突破,斥资500亿赴京建厂

台积电3nm工艺技术研发超预期

近日,2021年国际固态电路会议正式召开。在会议上,台积电董事长刘德音向外界公布了公司3nm工艺的研....
的头像 我快闭嘴 发表于 02-26 16:33 139次 阅读
台积电3nm工艺技术研发超预期

2020年全球前十半导体企业名单公布

最近两年,国内都非常关注半导体产业的发展,芯片设计、制造领域的头部企业,不少人都已经耳熟能详。不过,....
的头像 我快闭嘴 发表于 02-26 16:24 241次 阅读
2020年全球前十半导体企业名单公布

国产7nm芯片有望实现量产?

提及晶圆代工巨头,大多数人都会想到台积电和三星。这是因为两位巨头是目前全球范围内,唯二能够量产5nm....
的头像 我快闭嘴 发表于 02-26 16:19 229次 阅读
国产7nm芯片有望实现量产?

华为Mate30 RS手机怎么样?

日前,华为Mate X2折叠屏旗舰亮相,该机凭借着出众的硬件配置,出众的内折设计而大受关注。华为Ma....
的头像 我快闭嘴 发表于 02-26 16:15 183次 阅读
华为Mate30 RS手机怎么样?

寒武纪首颗7nm AI训练芯片实现量产

作为中国芯片产业的新黑马,成立于2016年的寒武纪,短短几年来便显露锋芒,并在2020年7月成功登陆....
的头像 我快闭嘴 发表于 02-26 16:06 264次 阅读
寒武纪首颗7nm AI训练芯片实现量产

浅谈数字后端工程师的工作

数字后端,顾名思义,它处于数字IC设计流程的后端,属于数字IC设计类岗位的一种。 在IC设计中,数字....
的头像 我快闭嘴 发表于 02-26 16:06 165次 阅读
浅谈数字后端工程师的工作

三星在NAND闪存市场将面临哪些挑战?

众所周知,三星电子在NAND闪存芯片市场上一直保持领先地位,占有30%以上的份额。但是,由于竞争对手....
的头像 我快闭嘴 发表于 02-26 15:49 236次 阅读
三星在NAND闪存市场将面临哪些挑战?

上汽集团借力地平线进军汽车芯片产业

  有消息称,上汽集团下属企业上汽乘用车已与智能芯片产业“独角兽”地平线敲定合作协议,上汽集团将以上....
的头像 汽车工程师 发表于 02-26 15:43 310次 阅读
上汽集团借力地平线进军汽车芯片产业

拜登承诺解决芯片短缺问题将需要数年时间实现?

据行业官员称,拜登总统最近的解决困扰汽车制造商和其他厂商的芯片短缺的承诺将需要数年的时间才能实现。而....
的头像 我快闭嘴 发表于 02-26 15:43 393次 阅读
拜登承诺解决芯片短缺问题将需要数年时间实现?

晶心科技将借道RISC-V挑战Arm?

晶心科是中国台湾唯一一家嵌入式处理器IP授权公司,可说是「台版Arm(安谋)」,但过去长年被Arm压....
的头像 我快闭嘴 发表于 02-26 15:38 176次 阅读
晶心科技将借道RISC-V挑战Arm?

解析半导体行业发展现状

半导体可能是世界上最重要的行业,因为它们是各种产品和服务的基础。此外,它们在新兴技术(例如人工智能(....
的头像 我快闭嘴 发表于 02-26 15:36 291次 阅读
解析半导体行业发展现状

大众德国最大工厂面临电池和芯片短缺难题

据外媒报道,大众在德国境内最大的工厂——沃尔夫斯堡(Wolfsburg)工厂正在竭力满足走强的汽车需....
的头像 汽车工程师 发表于 02-26 15:28 175次 阅读
大众德国最大工厂面临电池和芯片短缺难题

芯片制造商英飞凌表示将扩大芯片生产能力

芯片制造商英飞凌周四表示,将扩大生产能力,以解决全球供应短缺的问题,并将长期满足客户的需求。
的头像 我快闭嘴 发表于 02-26 15:23 153次 阅读
芯片制造商英飞凌表示将扩大芯片生产能力

回顾2020年德豪润达的发展情况

在披露公司控股股东芜湖德豪投资、实际控制人王冬雷因债务纠纷被列入失信被执行人名单仅半个月后,今日(2....
的头像 我快闭嘴 发表于 02-26 15:17 219次 阅读
回顾2020年德豪润达的发展情况

红米K40系列开售被秒光

2月25日晚9点半,红米K40系列正式在各大平台开售,但网友们却抢了个“寂寞”。不管哪个版本、哪个颜....
的头像 我快闭嘴 发表于 02-26 15:11 361次 阅读
红米K40系列开售被秒光

美国政府为何在此时提出重建供应链?

当地时间 11 日,包括英特尔、高通、美光和AMD等在内的一批美国芯片制造企业致信总统拜登,要求政府....
的头像 传感器技术 发表于 02-26 15:06 173次 阅读
美国政府为何在此时提出重建供应链?

NVIDIA奋斗八年快速缩小与Intel差距

15年前AMD花了54亿美元把ATI收购了,后面有传闻称Intel打算收购NVIDIA,那时候NVI....
的头像 如意 发表于 02-26 14:58 196次 阅读
NVIDIA奋斗八年快速缩小与Intel差距

解读英伟达的全球市值第一之路

就在今天早上,英伟达刚刚公布了其2021财年(2020年度)财务数据,公司年度营收与净利润都创下历史....
的头像 我快闭嘴 发表于 02-26 14:54 250次 阅读
解读英伟达的全球市值第一之路

半导体设备厂商中微公司发布2020年度业绩快报

在发布业绩预告后,半导体设备厂商中微公司2月25日发布了2020年度业绩快报。
的头像 我快闭嘴 发表于 02-26 14:50 178次 阅读
半导体设备厂商中微公司发布2020年度业绩快报

报道称百度正在计划成立独立芯片业务子公司

上周,CNBC报道称百度正在计划成立独立的芯片业务子公司,并且已经在和GGV、IDG等一线投资机构洽....
的头像 传感器技术 发表于 02-26 14:39 246次 阅读
报道称百度正在计划成立独立芯片业务子公司

解析“德国造AI”的发展逻辑和困局

“他者”是后殖民主义时期学术界对近代“西方中心主义”的一个批判概念,处于中心立场的“主体”和位于边缘....
的头像 我快闭嘴 发表于 02-26 14:34 214次 阅读
解析“德国造AI”的发展逻辑和困局

DRAM的涨价现象给本土厂商哪些机遇?

纵观市场情况,2020年的“涨价潮”显然已经延续到了今年,除了愈演愈烈的汽车产业缺芯外,存储产业也未....
的头像 中关村集成电路设计园 发表于 02-26 14:29 177次 阅读
DRAM的涨价现象给本土厂商哪些机遇?

芯片短缺成为制造业原材料上涨的罪魁祸首

制造业中的原材料上涨,芯片是否罪魁祸首?芯片短缺引发涨价、纸张价格上涨、化工原料上涨……这一波涨价潮....
发表于 02-26 14:13 362次 阅读
芯片短缺成为制造业原材料上涨的罪魁祸首

人脸识别技术方案在物业管理中的应用

城市化的一个重要方面便是社区、楼宇建设,在智能化升级过程中,用更具有可靠性的身份识别系统来保障社区管....
的头像 电子魔法师 发表于 02-26 14:02 279次 阅读
人脸识别技术方案在物业管理中的应用

浅谈5G发展机遇及未来趋势

2020年的“新基建”政策给5G建设提供了强大助力,面向2021年,5G发展将加速迎来落地。作为5G....
发表于 02-26 13:56 178次 阅读
浅谈5G发展机遇及未来趋势

电源芯片将再次成为争夺点

最新消息显示美总统将下令对半导体芯片、电动车高容量电池、稀土及药物4项关键产品供应链,展开为期100....
的头像 开关电源芯片 发表于 02-26 13:56 209次 阅读
电源芯片将再次成为争夺点

电源芯片缺货主要原因分析

银联宝科技浅析目前市场电源芯片紧缺的原因       根据市场分析,如今因为疫情等各方面情况问题,世....
的头像 开关电源芯片 发表于 02-26 13:54 248次 阅读
电源芯片缺货主要原因分析

新型硅纳米结构会将智能手机塑料镜头淘汰掉吗?

初创公司Metalenz表示,它的纳米结构比弯曲的塑料透镜在引导光进入图像传感器方面做得更好。 对于....
的头像 IEEE电气电子工程师学会 发表于 02-26 13:49 178次 阅读
新型硅纳米结构会将智能手机塑料镜头淘汰掉吗?

EPFL工程师开发出通过汗液检测压力水平的芯片

瑞士洛桑联邦理工学院(EPFL)的工程师开发了一种可穿戴的传感芯片,可以测量汗液中皮质醇的浓度。由于....
的头像 IEEE电气电子工程师学会 发表于 02-26 13:38 143次 阅读
EPFL工程师开发出通过汗液检测压力水平的芯片

索尼半导体推出全新低功耗NB2芯片组

蜂窝物联网芯片组供应商以色列索尼半导体(Sony Semiconductor Israel)日前宣布....
的头像 我快闭嘴 发表于 02-26 11:56 673次 阅读
索尼半导体推出全新低功耗NB2芯片组

555芯片等效图各功能区分析

  一、芯片引脚定义   二、芯片内部结构   三、等效图组成说明   四、等效图各功能区分析:分压电路 + 电压比较器  ...
发表于 02-25 07:37 0次 阅读
555芯片等效图各功能区分析

半导体制冷片的工作原理是什么?

半导体制冷片是利用半导体材料的Peltier效应而制作的电子元件,当直流电通过两种不同半导体材料串联成的电偶时,在电偶的两端即...
发表于 02-24 09:24 0次 阅读
半导体制冷片的工作原理是什么?

半导体常见的产品分类有哪些

半导体材料 半导体的功能分类 集成电路的四大类 ...
发表于 02-24 07:52 0次 阅读
半导体常见的产品分类有哪些

如何创建一颗芯片?

创建一颗芯片 从智能嵌入式到IoT,都可以使用ARM Cordio ...
发表于 02-22 07:48 0次 阅读
如何创建一颗芯片?

这个芯片是什么型号?那个标志是什么厂家的?

发表于 02-20 15:15 84次 阅读
这个芯片是什么型号?那个标志是什么厂家的?

硅是如何导电的?

  本征半导体   没有杂质的纯净的晶体才算得上本征半导体,比如硅、锗。   本征半导体是不导电的,为什么这么说呢?  ...
发表于 02-20 14:43 0次 阅读
硅是如何导电的?

HM5936B芯片资料

HM5936B是一款集成了锂电池充电管理,锂电池保护,DC-DC升压限流,3档风量可调风扇驱动功能于一体的电源管理IC;专用于...
发表于 02-19 15:40 115次 阅读
HM5936B芯片资料

HM5936B芯片资料

HM5936B是一款集成了锂电池充电管理,锂电池保护,DC-DC升压限流,3档风量可调风扇驱动功能于一体的电源管理IC;专用于...
发表于 02-19 15:17 101次 阅读
HM5936B芯片资料

ADI芯片丝印

哪位可以帮忙提供一下ADI的Tiny Part Number Cross Reference文档?...
发表于 02-05 14:34 101次 阅读
ADI芯片丝印

STM805T/S/R STM805T/S/R3V主管

RST 输出 NVRAM监督员为外部LPSRAM 芯片使能选通(STM795只)用于外部LPSRAM( 7 ns最大值丙延迟) 手册(按钮)复位输入 200毫秒(典型值)吨 REC 看门狗计时器 - 1.6秒(典型值) 自动电池切换 在STM690 /795分之704/804分之802/八百零六分之八百零五监督员是自载装置,其提供微处理器监控功能与能力的非挥发和写保护外部LPSRAM。精密电压基准和比较监视器在V
发表于 05-20 16:05 87次 阅读
STM805T/S/R STM805T/S/R3V主管

NCV8665 LDO稳压器 150 mA 低压差 低Iq 高PSRR

5是一款精密5.0 V固定输出,低压差集成稳压器,输出电流能力为150 mA。仔细管理轻负载电流消耗,结合低泄漏过程,可实现30μA的典型静态接地电流。 NCV8665的引脚与NCV8675和NCV4275引脚兼容,当输出电流较低且需要非常低的静态电流时,它可以替代这些器件。输出电压精确到±2.0%,在满额定负载电流下最大压差为600 mv。它具有内部保护,可防止45 V输入瞬变,输入电源反转,输出过流故障和过高的芯片温度。无需外部组件即可启用这些功能。 特性 优势 5.0 V固定输出电压,输出电压精度为2%(3.3 V和2.5 V可根据要求提供) 能够提供最新的微处理器 最大40 A静态电流,负载为100uA 满足100μA最大模块汽车制造商点火关闭静态电流要求 保护: -42 V反向电压保护短路 在任何汽车应用中都不需要外部组件来启用保护。 AEC-Q100合格 符合自动资格认证要求 极低压降电压 应用 终端产品 发动机控制模块 车身和底盘 动力总成 汽车 电路图、引脚图和封装图...
发表于 07-30 17:02 149次 阅读
NCV8665 LDO稳压器 150 mA 低压差 低Iq 高PSRR

NCV8664 LDO稳压器 150 mA 低Iq

4是一款精密5.0 V固定输出,低压差集成稳压器,输出电流能力为150 mA。仔细管理轻负载电流消耗,结合低泄漏过程,可实现典型的22μA静态接地电流。输出电压精确到±2.0%,在满额定负载电流下最大压差为600 mV 。 内部保护,防止输入电源反转,输出过流故障和过高的芯片温度。无需外部组件即可启用这些功能。 NCV8664的引脚和功能与NCV4264和NCV4264-2兼容,当需要非常低的静态电流时,它可以替代这些部件。 特性 优势 负载100μA时最大30μA静态电流 会见新车制造商最大模块静态电流要求(最大100μA)。 保护: -42 V反向电压保护短路保护热过载保护 在任何汽车应用中都不需要外部组件来启用保护。 极低压降电压 可以在低输入电压下启动时运行。 5.0 V和3.3V固定输出电压,2%输出电压精度 AEC-Q100合格 汽车 应用 车身和底盘 动力总成 发动机控制模块 信息娱乐,无线电 电路图、引脚图和封装图...
发表于 07-30 17:02 161次 阅读
NCV8664 LDO稳压器 150 mA 低Iq

NCV8675 LDO稳压器 350 mA 低压差 低Iq 高PSRR

5是一款精密5.0 V和3.3 V固定输出,低压差集成稳压器,输出电流能力为350 mA。仔细管理轻负载电流消耗,结合低泄漏过程,可实现34μA的典型静态接地电流。 内部保护免受输入瞬态,输入电源反转,输出过流故障和芯片温度过高的影响。无需外部元件即可实现这些功能。 NCV8675引脚与NCV4275引脚兼容,当需要非常低的静态电流时,它可以替代该器件。对于D 2 PAK-5封装,输出电压精确到±2.0%,对于DPAK-5封装,输出电压精确到±2.5%,在满额定负载电流下,最大压差为600 mV。 特性 优势 5.0 V和3.3 V固定输出电压,输出电压精度为2%或2.5% 能够提供最新的微处理器 负载为100uA时最大34uA静态电流 满足100uA最大模块汽车制造商点火关闭静态电流要求 保护: -42 V反向电压保护短路 在任何汽车应用中都不需要外部组件来实现保护。 AEC-Q100 Qualifie d 符合自动资格认证要求 极低压降电压 应用 终端产品 发动机控制模块 车身和底盘 动力总成 汽车 电路图、引脚图和封装图...
发表于 07-30 16:02 136次 阅读
NCV8675 LDO稳压器 350 mA 低压差 低Iq 高PSRR

NCV7812 线性稳压器 1 A 12 V.

线性稳压器是单片集成电路,设计用作固定电压调节器,适用于各种应用,包括本地,卡上调节。这些稳压器采用内部限流,热关断和安全区域补偿。通过充分的散热,它们可以提供超过1.0 A的输出电流。虽然主要设计为固定电压调节器,但这些器件可以与外部元件一起使用,以获得可调电压和电流。 特性 输出电流超过1.0 A 无需外部元件 内部热过载保护 内部短路电流限制 输出晶体管安全区域补偿 输出电压提供1.5%,2%和4%容差 无铅封装可用 应用 可用于Surface Mount D 2 PAK和Standard 3 -Lead Transistor Packages 电路图、引脚图和封装图...
发表于 07-30 16:02 136次 阅读
NCV7812 线性稳压器 1 A 12 V.

NCV4264-2 LDO稳压器 100 mA 低Iq 高PSRR

4-2功能和引脚与NCV4264引脚兼容,具有更低的静态电流消耗。其输出级提供100 mA,输出电压精度为+/- 2.0%。在100 mA负载电流下,最大压差为500 mV。它具有内部保护,可防止45 V输入瞬变,输入电源反转,输出过流故障和过高的芯片温度。无需外部组件即可启用这些功能。 特性 优势 最大60μA静态电流,负载为100μA 处于待机模式时可以节省电池寿命。 保护: - 42 V反向电压保护短路保护热过载保护 无需外部元件在任何汽车应用中都需要保护。 极低压差 可以在低输入电压下启动时运行。 5.0 V和3.3 V固定输出电压,输出电压精度为2% AEC-Q100合格 应用 终端产品 车身和底盘 动力总成 发动机控制模块 汽车 电路图、引脚图和封装图...
发表于 07-30 13:02 118次 阅读
NCV4264-2 LDO稳压器 100 mA 低Iq 高PSRR

NCV4264 LDO稳压器 100 mA 高PSRR

4是一款宽输入范围,精密固定输出,低压差集成稳压器,满载电流额定值为100 mA。输出电压精确到±2.0%,在100 mA负载电流下最大压差为500 mV。 内部保护免受45 V输入瞬变,输入电源反转,输出过流故障和过高的芯片温度。无需外部组件即可启用这些功能。 特性 优势 5.0 V和3.3 V固定输出电压和2.0%输出电压精度 严格的监管限制 非常低的辍学 可以在低输入电压下启动时运行。 保护: -42 V反向电压保护短路保护热过载保护 在任何汽车应用中都不需要外部组件来启用保护。 AEC-Q100合格 符合汽车资格标准 应用 终端产品 车身与底盘 动力总成 发动机控制模块 汽车 电路图、引脚图和封装图...
发表于 07-30 13:02 277次 阅读
NCV4264 LDO稳压器 100 mA 高PSRR

NCV4264-2C LDO稳压器 100 mA 低Iq 高PSRR

4-2C是一款低静态电流消耗LDO稳压器。其输出级提供100 mA,输出电压精度为+/- 2.0%。在100 mA负载电流下,最大压差为500 mV。它具有内部保护,可防止45 V输入瞬变,输入电源反转,输出过流故障和过高的芯片温度。无需外部组件即可启用这些功能。 特性 优势 最大60μA静态电流,负载为100μ 在待机模式下节省电池寿命。 极低压降500 mV( max)100 mA负载电流 可以在低输入电压下启动时运行。 故障保护: -42 V反向电压保护短路/过流保护热过载保护 在任何汽车应用中都不需要外部组件来启用保护。 5.0 V和3.3 V固定输出电压,输出电压精度为2%,在整个温度范围内 AEC-Q100合格 应用 终端产品 发动机控制模块 车身和底盘 动力总成 汽车 电路图、引脚图和封装图...
发表于 07-30 13:02 239次 阅读
NCV4264-2C LDO稳压器 100 mA 低Iq 高PSRR

NCV8772 LDO稳压器 350 mA 低Iq

2是350 mA LDO稳压器,集成了复位功能,专用于微处理器应用。其坚固性使NCV8772可用于恶劣的汽车环境。超低静态电流(典型值低至24μA)使其适用于永久连接到需要具有或不具有负载的超低静态电流的电池的应用。当点火开关关闭时,模块保持活动模式时,此功能尤其重要。 Enable功能可用于进一步降低关断模式下的静态电流至1μA。 NCV8772包含电流限制,热关断和反向输出电流保护等保护功能。 特性 优势 固定输出电压为5 V 非常适合为微处理器供电。 2%输出电压上升至Vin = 40 V 通过负载突降维持稳压电压。 输出电流高达350 mA 我们广泛的汽车调节器产品组合允许您选择适合您应用的汽车调节器。 RESET输出 禁止微处理器在低电压下执行未请求的任务。 汽车的NCV前缀 符合汽车现场和变更控制& AEC-Q100资格要求。 低压差 在低输入电压下维持输出电压调节(特别是在汽车起动过程中)。 超低静态电流24μA典型 符合最新的汽车模块要求小于100μA。 热关机 保护设备免受高温下的永久性损坏。 短路 保护设备不会因电流过...
发表于 07-30 12:02 160次 阅读
NCV8772 LDO稳压器 350 mA 低Iq

NCV8770 LDO稳压器 350 mA 低Iq

0是350 mA LDO稳压器,集成了复位功能,专用于微处理器应用。其坚固性使NCV8770可用于恶劣的汽车环境。超低静态电流(典型值低至21μA)使其适用于永久连接到需要具有或不具有负载的超低静态电流的电池的应用。当点火开关关闭时,模块保持活动模式时,此功能尤其重要。 NCV8770包含电流限制,热关断和反向输出电流保护等保护功能。 特性 优势 固定输出电压为5 V 非常适合为微处理器供电。 2%输出电压上升至Vin = 40 V 通过负载突降维持稳压电压。 输出电流高达350 mA 我们广泛的汽车调节器产品组合允许您选择适合您应用的汽车调节器。 RESET输出 禁止微处理器在低电压下执行未请求的任务。 汽车的NCV前缀 符合汽车现场和变更控制& AEC-Q100资格要求。 低压差 在低输入电压下维持输出电压调节(特别是在汽车起动过程中)。 典型值为21μA的超低静态电流 符合最新的汽车模块要求小于100μA。 热关机 保护设备免受高温下的永久性损坏。 短路 保护设备不会因电流过大而在芯片上产生金属开路。 非常广泛的Cout和E...
发表于 07-30 12:02 126次 阅读
NCV8770 LDO稳压器 350 mA 低Iq

MC33160 线性稳压器 100 mA 5 V 监控电路

0系列是一种线性稳压器和监控电路,包含许多基于微处理器的系统所需的监控功能。它专为设备和工业应用而设计,为设计人员提供了经济高效的解决方案,只需极少的外部组件。这些集成电路具有5.0 V / 100 mA稳压器,具有短路电流限制,固定输出2.6 V带隙基准,低电压复位比较器,带可编程迟滞的电源警告比较器,以及非专用比较器,非常适合微处理器线路同步。 其他功能包括用于低待机电流的芯片禁用输入和用于过温保护的内部热关断。 这些线性稳压器采用16引脚双列直插式热片封装,可提高导热性。 特性 5.0 V稳压器输出电流超过100 mA 内部短路电流限制 固定2.6 V参考 低压复位比较器 具有可编程迟滞的电源警告比较器 未提交的比较器 低待机当前 内部热关断保护 加热标签电源包 无铅封装可用 电路图、引脚图和封装图...
发表于 07-30 06:02 125次 阅读
MC33160 线性稳压器 100 mA 5 V 监控电路

NCV896530 双输出降压转换器 低电压 2.1 MHz

530双路降压DC-DC转换器是一款单片集成电路,专用于下游电压轨的汽车驾驶员信息系统。两个通道均可在0.9 V至3.3 V范围内进行外部调节,并可提供高达1600 mA的电流。转换器的工作频率为2.1 MHz,高于敏感的AM频段,并且相位差180°,以减少轨道上的大量电流需求。同步整流提高了系统效率。 NCV896530提供汽车电源系统的其他功能,如集成软启动,逐周期电流限制和热关断保护。该器件还可以与2.1 MHz范围内的外部时钟信号同步。 NCV896530采用节省空间的3 x 3 mm 10引脚DFN封装。 特性 优势 同步整改 效率更高 2.1 MHz开关频率 电感更小,没有AM频段发射 热限制和短路保护 故障保护 2输出为180°异相 降低输入纹波 内部MOSFET 降低成本和解决方案规模 应用 音频 资讯娱乐t 仪器 电路图、引脚图和封装图...
发表于 07-30 05:02 142次 阅读
NCV896530 双输出降压转换器 低电压 2.1 MHz

FAN53880 一个降压 一个升压和四个LDO PMIC

80是一款用于移动电源应用的低静态电流PMIC。 PMIC包含一个降压,一个升压和四个低噪声LDO。 特性 晶圆级芯片级封装(WLCSP) 可编程输出电压 软启动(SS)浪涌电流限制 可编程启动/降压排序 中断报告的故障保护 低电流待机和关机模式 降压转换器:1.2A,VIN范围: 2.5V至5.5V,VOUT范围:0.6V至3.3V 升压转换器:1.0A,VIN范围:2.5V至5.5V,VOUT范围:3.0V至5.7V 四个LDO:300mA,VIN范围:1.9V至5.5V,VOUT范围:0.8V至3.3V 应用 终端产品 电池和USB供电设备 智能手机 平板电脑 小型相机模块 电路图、引脚图和封装图...
发表于 07-30 04:02 310次 阅读
FAN53880 一个降压 一个升压和四个LDO PMIC

NCP1532 降压转换器 DC-DC 双通道 低Iq 高效率 2.25 MHz 1.6 A.

2双级降压DCDC转换器是一款单片集成电路,专用于为采用1节锂离子电池或3节碱性/镍镉/镍氢电池供电的便携式应用提供新型多媒体设计的核心和I / O电压。两个通道均可在0.9V至3.3V之间进行外部调节,每个通道可提供高达1.6A的电流,最大电流为1.0A。转换器以2.25MHz的开关频率运行,通过允许使用小电感(低至1uH)和电容器并以180度异相工作来减小元件尺寸,从而减少电池的大量电流需求。自动切换PWM / PFM模式和同步整流可提高系统效率。该器件还可以工作在固定频率PWM模式,适用于需要低纹波和良好负载瞬变的低噪声应用。其他功能包括集成软启动,逐周期电流限制和热关断保护。该器件还可以与2.25 MHz范围内的外部时钟信号同步。 NCP1532采用节省空间的超薄型3x3 x 0.55 mm 10引脚uDFN封装。 特性 优势 97%效率,50uA静态电流,0.3 uA关断电流 延长电池寿命和'播放时间' 2.25MHz开关频率 允许使用更小的电感和电容 模式引脚操作:仅在轻载或PWM模式下自动切换PWM / PFM模式 允许用户在轻载或低噪声和纹波性能之间选择低功耗 可调输出电压0.9V至3.3V 复位输出引脚...
发表于 07-30 03:02 203次 阅读
NCP1532 降压转换器 DC-DC 双通道 低Iq 高效率 2.25 MHz 1.6 A.

NCP1522B 降压转换器 DC-DC 3 MHz 600 mA

2B降压型DC-DC转换器是一款单片集成电路,针对便携式应用进行了优化,采用单节锂离子电池或三节碱性/镍镉/镍氢电池供电。该器件采用0.9 V至3.3 V的可调输出电压,可提供高达600 mA的电流。它使用同步整流来提高效率并减少外部部件数量。该器件还内置3 MHz(标称)振荡器,通过允许更小的电感器和电容器来减小元件尺寸。自动切换PWM / PFM模式可提高系统效率。其他功能包括集成软启动,逐周期电流限制和热关断保护。 NCP1522B采用节省空间的薄型TSOP5和UDFN6封装。 特性 优势 94%效率,50 uA静态电流,0.3 uA关断电流 延长电池寿命和'播放时间' 3.0 MHz开关频率 允许使用更小的电感(低至1uH)和电容 轻负载条件下PWM和PFM模式之间的自动切换 轻载时的低功耗 可调输出电压0.9V至3.3V 应用 终端产品 电源f或应用处理器 核心电压低的处理器电源 智能手机手机和掌上电脑 MP3播放器和便携式音频系统 数码相机和摄像机 电路图、引脚图和封装图...
发表于 07-30 02:02 168次 阅读
NCP1522B 降压转换器 DC-DC 3 MHz 600 mA

NCP1529 降压转换器 DC-DC 高效率 可调节输出电压 低纹波 1.7 MHz 1 A.

9降压型DC-DC转换器是一款单片集成电路,适用于由一节锂离子电池或三节碱性/镍镉/镍氢电池供电的便携式应用。该器件可在外部可调范围为0.9 V至3.9 V或固定为1.2 V或1.35 V的输出范围内提供高达1.0 A的电流。它使用同步整流来提高效率并减少外部元件数量。该器件还内置1.7 MHz(标称)振荡器,通过允许使用小型电感器和电容器来减小元件尺寸。自动切换PWM / PFM模式可提高系统效率。 其他功能包括集成软启动,逐周期电流限制和热关断保护。 NCP1529采用节省空间的扁平2x2x0.5 mm UDFN6封装和TSOP-5封装。 特性 优势 96%效率,28 uA静态电流,0.3 uA关断电流 延长电池续航时间和'播放时间' 1.7 MHz开关频率 允许使用更小的电感和电容器 在轻负载条件下自动切换PWM和PFM模式 轻载时的低功耗 可调输出电压0.9V至3.9V 即使在PFM模式下,同类最佳低纹波 应用 终端产品 电池供电应用电源管理 核心电压低的处理器电源 USB供电设备 低压直流电源电源管理 手机,智能手机和掌上电脑 MP3播放器和便携式音频系统 电路图、引脚图和封装图...
发表于 07-30 02:02 457次 阅读
NCP1529 降压转换器 DC-DC 高效率 可调节输出电压 低纹波 1.7 MHz 1 A.

NCV2575 降压转换器 开关稳压器 可调输出电压 1.0 A.

系列降压开关稳压器是单片集成电路,非常适合简单方便地设计降压型开关稳压器(降压转换器)。该系列的所有电路均能够以极佳的线路和负载调节驱动1.0 A负载。这些器件提供3.3 V,5.0 V,12 V,15 V的固定输出电压和可调输出版本。 此降压开关稳压器旨在最大限度地减少外部元件的数量,从而简化电源设计。标准系列电感器针对LM2575进行了优化,由多家不同的电感器制造商提供。 由于LM2575转换器是一种开关电源,与传统的三端线性稳压器相比,其效率要高得多,特别是在输入电压较高的情况下。在许多情况下,LM2575稳压器消耗的功率非常低,不需要散热器,也不会大幅降低其尺寸。 LM2575的特性包括在指定的输入电压和输出负载条件下保证4%的输出电压容差,以及振荡器频率的+/- 10%(0C至125C的+/- 2%)。包括外部关断,具有80 uA典型待机电流。输出开关包括逐周期电流限制,以及在故障条件下进行全保护的热关断。 特性 3.3 V,5.0 V,12 V ,15 V和可调输出版本 可调版本输出电压范围为1.23 V至37 V +/- 4%最大线路和负载条件 保证1.0 A输出电流 宽输入电压范围:4.75 V至40 V 仅需要4个外部元件 ...
发表于 07-30 01:02 249次 阅读
NCV2575 降压转换器 开关稳压器 可调输出电压 1.0 A.

NCV5171 升压转换器 280 kHz 1.5 A 用于汽车

1 / 73产品是280 kHz / 560 kHz升压调节器,具有高效率,1.5 A集成开关。该器件可在2.7 V至30 V的宽输入电压范围内工作。该设计的灵活性使芯片可在大多数电源配置中运行,包括升压,反激,正激,反相和SEPIC。该IC采用电流模式架构,可实现出色的负载和线路调节,以及限制电流的实用方法。将高频操作与高度集成的稳压器电路相结合,可实现极其紧凑的电源解决方案。电路设计包括用于正电压调节的频率同步,关断和反馈控制等功能。这些器件与LT1372 / 1373引脚兼容,是CS5171和CS5173的汽车版本。 特性 内置过流保护 宽输入范围:2.7V至30V 高频允许小组件 最小外部组件 频率折返减少过流条件下的元件应力 带滞后的热关机 简易外部同步 集成电源开关:1.5A Guarnateed 引脚对引脚与LT1372 / 1373兼容 这些是无铅设备 用于汽车和其他应用需要站点和控制更改的ons CS5171和CS5173的汽车版本 电路图、引脚图和封装图...
发表于 07-30 00:02 134次 阅读
NCV5171 升压转换器 280 kHz 1.5 A 用于汽车

NCP161 LDO稳压器 450 mA 超高PSRR 超低噪声

是一款线性稳压器,能够提供450 mA输出电流。 NCP161器件旨在满足RF和模拟电路的要求,可提供低噪声,高PSRR,低静态电流和非常好的负载/线路瞬态。该器件设计用于1μF输入和1μF输出陶瓷电容。它有两种厚度的超小0.35P,0.65 mm x 0.65 mm芯片级封装(CSP),XDFN-4 0.65P,1 mm x 1 mm和TSOP5封装。 类似产品:
发表于 07-29 21:02 251次 阅读
NCP161 LDO稳压器 450 mA 超高PSRR 超低噪声

AR0521 CMOS图像传感器 5.1 MP 1 / 2.5

是一款1 / 2.5英寸CMOS数字图像传感器,有源像素阵列为2592(H)x 1944(V)。它通过滚动快门读数捕获线性或高动态范围模式的图像,并包括复杂的相机功能,如分档,窗口以及视频和单帧模式。它专为低亮度和高动态范围性能而设计,具有线路交错T1 / T2读出功能,可在ISP芯片中支持片外HDR。 AR0521可以产生非常清晰,锐利的数字图像,并且能够捕获连续视频和单帧,使其成为安全应用的最佳选择。 特性 5 Mp为60 fps,具有出色的视频性能 小型光学格式(1 / 2.5英寸) 1440p 16:9模式视频 卓越的低光性能 2.2 m背面照明像素技术 支持线路交错T1 / T2读出以启用ISP芯片中的HDR处理 支持外部机械快门 片上锁相环(PLL)振荡器 集成颜色和镜头阴影校正 精确帧率控制的从属模式 数据接口:♦HiSPi(SLVS) - 4个车道♦MIPI CSI-2 - 4车道 自动黑电平校准 高速可配置上下文切换 温度传感器 快速模式兼容2线接口 应用 终端产品 视频监控 高动态范围成像 安全摄像头 行动相机 车载DVR 电路图、引脚图和封装...
发表于 07-29 16:02 645次 阅读
AR0521 CMOS图像传感器 5.1 MP 1 / 2.5