0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

关于ARMv7的知识--了解

GReq_mcu168 来源:玩转单片机 作者:玩转单片机 2020-10-30 11:34 次阅读

首先,在学习Cortex-M3时,我们必须要知道必要的缩略语。

整理如下:

AMBA:先进单片机总线架构 ADK:AMBA设计套件 AHB:先进高性能总线 AHB-AP:AHB访问端口 APB:先进外设总线 ARM ARM:ARM架构参考手册 ASIC:行业领域专用集成电路 ATB :先进跟踪总线 BE8:字节不变式大端模式 CPI:每条指令的周期数 DAP:调试访问端口 DSP数字信号处理(器) DWT:数据观察点及跟踪 ETM:嵌入式跟踪宏单元 FPB:闪存地址重载及断点 FSR:fault状态寄存器 HTM:Core Sight AHB跟踪宏单元 ICE:在线仿真器 IDE:集成开发环境 IRQ:中断请求(通常是外中断请求) ISA:指令系统架构 ISR:中断服务例程 ITM:仪器化跟踪宏单元 JTAG:连接点测试行动组(一个关于测试和调试接口的标准) LR:连接寄存器 LSB:最低有效位 MSB:最高有效位 LSU:加载存储单元 MCU微控制器单元 MPU:存储器保护单元 MMU:存储器管理单元 MSP:主堆栈指针 NMI:不可屏蔽中断 NVIC:嵌套向量中断控制器 PC:程序计数器 PPB:私有外设总线

同时,还要如下规定:

数值:

1. 4''hC , 0x123 都表示16进制数
2. #3表示数字3 (e.g., IRQ #3 就是指3号中断)
3. #immed_12表示一个12位的立即数
4. 寄存器位。通常是表示一个位段的数值,例如
bit[15:12] 表示位序号从15往下数到12,这一段的数值。 寄存器访问类型
1. R 表示只读
2. W表示只写
3. RW 表示可读可写(前3条好像地球人都知道)
4. R/Wc 表示可读,但是写访问将使之清 0Cortex-M3芯片简介1、芯片的基本结构如下图:


2、关于ARMv7的知识--了解

在这个版本中,内核架构首次从单一款式变成3种款式:

款式A:设计用于高性能的“开放应用平台”——越来越接近电脑

款式R:用于高端的嵌入式系统,尤其是那些带有实时要求的——又要快又要实时。

款式M:用于深度嵌入的,单片机风格的系统中

介绍A:用于高性能的“开放应用平台”,应用在那些需要运行复杂应用程序的处理器。支持大型嵌入式操作系统

R:用于高端的嵌入式系统,要求实时性的

M:用于深度嵌入的、单片机风格的系统中 3、Cortex-M3处理器的舞台

高性能+高代码密度+小硅片面积,使得CM3大面积地成为理想的处理平台,主要应用在以下领域:

(1)低成本单片机

(2)汽车电子

(3)数据通信

(4)工业控制

(5)消费类电子产品4、Cortex-M3概览(1)简介 Cortex-M3是一个 32位处理器内核。内部的数据路径是 32位的,寄存器是 32位的,存储器接口也是 32 位的。CM3 采用了哈佛结构,拥有独立的指令总线和数据总线,可以让取指与数据访问并行不悖。这样一来数据访问不再占用指令总线,从而提升了性能。为实现这个特性, CM3内部含有好几条总线接口,每条都为自己的应用场合优化过,并且它们可以并行工作。但是另一方面,指令总线和数据总线共享同一个存储器空间(一个统一的存储器系统)。 比较复杂的应用可能需要更多的存储系统功能,为此CM3提供一个可选的MPU,而且在需要的情况下也可以使用外部的 cache。另外在CM3中,Both小端模式和大端模式都是支持的。

(2)Cortex-M3的简化图

(3)寄存器组

处理器拥有R0-R15的寄存器组,其中R13最为堆栈指针SP,SP有两个,但是同一时刻只能有一个可以看到,这就是所谓的“banked”寄存器。


a、R0-R12都是 32位通用寄存器,用于数据操作。但是注意:绝大多数 16位Thumb指令只能访问R0-R7,而 32位 Thumb-2指令可以访问所有寄存器。 b、Cortex-M3拥有两个堆栈指针,然而它们是 banked,因此任一时刻只能使用其中的一个。
主堆栈指针(MSP):复位后缺省使用的堆栈指针,用于操作系统内核以及异常处理例程(包括中断服务例程)
进程堆栈指针(PSP):由用户的应用程序代码使用。 ---堆栈指针的最低两位永远是0,这意味着堆栈总是4字节对齐的。--- c、R14:连接寄存器--当呼叫一个子程序时,由R14存储返回地址 d、R15:程序计数寄存器--指向当前的程序地址,如果修改它的值,就能改变程序的执行流(这里有很多高级技巧) e、Cortex-M3还在内核水平上搭载了若干特殊功能寄存器,包括 程序状态字寄存器组(PSRs) 中断屏蔽寄存器组(PRIMASK, FAULTMASK, BASEPRI)
控制寄存器(CONTROL)


Cortex-M3处理器支持两种处理器的操作模式,还支持两级特权操作。
两种操作模式分别为:处理者模式和线程模式(thread mode)。引入两个模式的本意,是用于区别普通应用程序的代码和异常服务例程的代码——包括中断服务例程的代码。

Cortex-M3 的另一个侧面则是特权的分级——特权级和用户级。这可以提供一种存储器访问的保护机制,使得普通的用户程序代码不能意外地,甚至是恶意地执行涉及到要害的操作。处理器支持两种特权级,这也是一个基本的安全模型。


在 CM3 运行主应用程序时(线程模式),既可以使用特权级,也可以使用用户级;但是异常服务例程必须在特权级下执行。复位后,处理器默认进入线程模式,特权极访问。在特权级下,程序可以访问所有范围的存储器(如果有 MPU,还要 在MPU规定的禁地之外),并且可以执行所有指令。
在特权级下的程序可以为所欲为,但也可能会把自己给玩进去——切换到用户级。一旦进入用户级,再想回来就得走“法律程序”了——用户级的程序不能简简单单地试图改写 CONTROL寄存器就回到特权级,它必须先“申诉”:执行一条系统调用指令(SVC)。这会触发SVC异常,然后由异常服务例程(通常是操作系统的一部分)接管,如果批准了进入,则异常服务例程修改 CONTROL寄存器,才能在用户级的线程模式下重新进入特权级。

事实上,从用户级到特权级的唯一途径就是异常:如果在程序执行过程中触发了一个异常,处理器总是先切换入特权级,并且在异常服务例程执行完毕退出时,返回先前的状态


通过引入特权级和用户级,就能够在硬件水平上限制某些不受信任的或者还没有调试好的程序,不让它们随便地配置涉及要害的寄存器,因而系统的可靠性得到了提高。进一步地,如果配了 MPU,它还可以作为特权机制的补充——保护关键的存储区域不被破坏,这些区域通常是操作系统的区域。 (4)内建的嵌套向量中断控制器 Cortex-M3 在内核水平上搭载了一颗中断控制器——嵌套向量中断控制器 NVIC(Nested Vectored Interrupt Controller)。它与内核有很深的“亲密接触”——与内核是紧耦合的。
NVIC提供如下的功能:
可嵌套中断支持
向量中断支持
动态优先级调整支持
中断延迟大大缩短
中断可屏蔽 可嵌套中断支持:可嵌套中断支持的作用范围很广,覆盖了所有的外部中断和绝大多数系统异常。外在表现是,这些异常都可以被赋予不同的优先级。当前优先级被存储在 xPSR 的专用字段中。当一个异常发生时,硬件会自动比较该异常的优先级是否比当前的异常优先级更高。如果发现来了更高优先级的异常,处理器就会中断当前的中断服务例程(或者是普通程序),而服务新来的异常——即立即抢占。 向量中断支持:当开始响应一个中断后,CM3会自动定位一张向量表,并且根据中断号从表中找出 ISR的入口地址,然后跳转过去执行。不需要像以前的 ARM那样,由软件来分辨到底是哪个中断发生了,也无需半导体厂商提供私有的中断控制器来完成这种工作。这么一来,中断延迟时间大为缩短。 (5)存储器映射Cortex-M3支持4G存储空间,具体分配如下图:


(6)总线接口Cortex-M3内部有若干个总线接口,以使 CM3能同时取址和访内(访问内存),它们是:
? 指令存储区总线(两条)
? 系统总线
? 私有外设总线
有两条代码存储区总线负责对代码存储区的访问,分别是 I-Code 总线和 D-Code 总线。前者用于取指,后者用于查表等操作,它们按最佳执行速度进行优化。
系统总线用于访问内存和外设,覆盖的区域包括 SRAM,片上外设,片外 RAM,片外扩展设备,以及系统级存储区的部分空间。
私有外设总线负责一部分私有外设的访问,主要就是访问调试组件。它们也在系统级存储区。 (7)存储器保护单元(MPU) Cortex-M3有一个可选的存储器保护单元。配上它之后,就可以对特权级访问和用户级访问分别施加不同的访问限制。当检测到犯规(violated)时,MPU 就会产生一个 fault 异常,可以由fault异常的服务例程来分析该错误,并且在可能时改正它。
MPU 有很多玩法。最常见的就是由操作系统使用 MPU,以使特权级代码的数据,包括操作系统本身的数据不被其它用户程序弄坏。MPU在保护内存时是按区管理的。它可以把某些内存 region设置成只读,从而避免了那里的内容意外被更改;还可以在多任务系统中把不同任务之间的数据区隔离。一句话,它会使嵌入式系统变得更加健壮,更加可靠(很多行业标准,尤其是航空的,就规定了必须使用 MPU来行使保护职能——译
注) 。 (8)Cortex-M3的简评1、高性能许多指令都是单周期的——包括乘法相关指令。并且从整体性能上,Cortex-M3比得过绝大多数其它的架构。
指令总线和数据总线被分开,取值和访内可以并行不悖
Thumb-2的到来告别了状态切换的旧世代,再也不需要花时间来切换于 32位 ARM状态和16位Thumb状态之间了。这简化了软件开发和代码维护,使产品面市更快。
Thumb-2指令集为编程带来了更多的灵活性。许多数据操作现在能用更短的代码搞定,这意味着 Cortex-M3的代码密度更高,也就对存储器的需求更少。
取指都按 32位处理。同一周期最多可以取出两条指令,留下了更多的带宽给数据传输。
Cortex-M3的设计允许单片机高频运行(现代半导体制造技术能保证 100MHz以上的速度)即使在相同的速度下运行,CM3的每指令周期数(CPI)也更低,于是同样的 MHz下可以做更多的工作;另一方面,也使同一个应用在 CM3上需要更低的主频。 2、先进的中断处理功能内建的嵌套向量中断控制器支持240条外部中断输入。向量化的中断功能大大减少了中断延迟,因为不在需要软件去判断中断源。中断的嵌套也是在硬件水平上实现的,不需要软件代码来实现。 Cortex-M3在进入异常服务例程时,自动压栈了 R0-R3, R12, LR, PSR 和PC,并且在返回时自动弹出它们,这多清爽!既加速了中断的响应,也再不需要汇编语言代码了 NVIC支持对每一路中断设置不同的优先级,使得中断管理极富弹性。最粗线条的实现也至少要支持 8级优先级,而且还能动态地被修改。
优化中断响应还有两招,它们分别是“咬尾中断机制”和“晚到中断机制”。
有些需要较多周期才能执行完的指令,是可以被中断-继续的——就好比它们是一串指令一样。这些指令包括加载多个寄存器(LDM),存储多个寄存器(STM),多个寄存器参与的PUSH,以及多个寄存器参与的 POP。
除非系统被彻底地锁定,NMI(不可屏蔽中断)会在收到请求的第一时间予以响应。对很多安全-关键(safety-critical)的应用,NMI都是必不可少的(如化学反应即将失控时的紧急停机)。 通过上面我们可以很容易理解STM32的一些基本知识和结构,为学习STM32打好了基础。

责任编辑:lq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 处理器
    +关注

    关注

    68

    文章

    18257

    浏览量

    222079
  • 寄存器
    +关注

    关注

    30

    文章

    5027

    浏览量

    117710
  • STM32
    +关注

    关注

    2239

    文章

    10670

    浏览量

    348711

原文标题:STM32经典概述(干货 )

文章出处:【微信号:mcu168,微信公众号:硬件攻城狮】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    ARMv7安全引导的过程

    对于安全引导功能的实现和验证过程各家芯片公司的方案都不一样,这是由该芯片的启动流程以及启动所需镜像文件来决定的,但都会遵循链式验签启动的原则。 ARMv7架构并没有使用ATF,系统的启动流程与以前
    的头像 发表于 11-07 15:25 329次阅读
    <b class='flag-5'>ARMv7</b>安全引导的过程

    armv7 generic timer使用笔记

    armv7-A架构中每个CPU核心都包含自己的私有定时器,所有cpu的定时器共享一个System counter, System counter负责产生计数,传递到每个核心的私有定时器
    的头像 发表于 09-27 15:10 1390次阅读
    <b class='flag-5'>armv7</b> generic timer使用笔记

    ARMv7-A工作模式介绍

    TF-A 一开始是为 ARMv8 准备的,ARMv8 最突出的特点就是支持 64 位指令,但是为了兼容原来的 ARMv7ARMv8提供了两种指令集:AAarch64 和 AArch3
    的头像 发表于 09-11 16:31 485次阅读
    <b class='flag-5'>ARMv</b>7-A工作模式介绍

    如何将软件应用程序从ARMv5迁移到ARMv7-A/R

    本文档旨在帮助您将软件应用程序从ARMv5迁移到ARMv7。 它描述了ARMv5和ARMv7之间的区别,并解释了将现有软件应用程序从ARMv
    发表于 08-29 06:51

    在基于ARMv7的平台1.0版上使用CSAT进行低级调试

    此教程提供了使用 CoreSight Access 工具在基于 Armv7 的平台上执行某些基本调试操作的信息。 此教程侧重于使用与 DS-5 一起运输的核心Sight Access 工具在
    发表于 08-28 06:50

    ARM Cortex-A系列ARMv8-A程序员指南

    了向后兼容机制,以使现有的ARMv7软件能够执行。 AArch64是用于描述ARMv8架构的64位执行状态的名称。 AArch32描述了ARMv8体系结构的32位执行状态,这与ARMv7
    发表于 08-22 07:22

    ARM体系结构参考手册ARMv7-A和ARMv7-R版本

    本手册介绍ARM®架构v7ARMv7的A和R配置文件。 其中包括以下内容的描述: ·处理器指令集: -原始ARM®指令集-高代码密度Thumb®指令集-ThumbEE指令集,包括对实时(JIT)或
    发表于 08-12 07:46

    简述Cortex-M0―4各个优势

    Cortex系列属于ARMv7架构,这是到2010年为止ARM公司最新的指令集架构。
    的头像 发表于 08-04 14:51 819次阅读
    简述Cortex-M0―4各个优势

    Cortex-A7浮点单元技术参考手册

    Cortex-A7 FPU是ARMv7浮点体系结构的VFPv4-D16实现。它提供了低成本的高性能浮点计算。Cortex-A7 FPU支持《ARM体系结构参考手册》中描述的所有寻址模式和操作
    发表于 08-02 19:24

    Armv8-A内存定序模型详解

    ,如启动代码或驱动器;对于为多读应用程序或共享内存系统写入代码的任何人都特别相关;本指南末尾,您可以检查您的知识;在开始之前,本指南假定您熟悉武器内存类型;如果不熟悉,则在 Armv8-A 记忆模型指南中读取关于设备内存和正常内
    发表于 08-02 11:03

    ARMV7-M体系结构参考手册

    Arm体系结构经过几次重大修订,已发展到支持实现的程度在广泛的性能点上,每年生产超过10亿个零件。最新Armv7版本通过定义一组架构概要文件正式承认了这种多样性架构以适应不同的市场需求。一个关键因素
    发表于 08-02 09:43

    Armv8-A和Armv9-A的内存属性和属性介绍

    代码或驱动器)的任何人都有用。对于任何写入内存管理单元(MMMU)的代码的人来说,设置或管理内存管理单元(MMU)尤其相关。在指南的结尾,您可以检查自己的知识。您将了解不同的内存类型及其关键差异,您也将能够列出可用于特定地址的内存属性。
    发表于 08-02 09:03

    了解Armv9-A体系结构之SVE2简介

    本指南是Armv9-A 结构的可缩放矢量扩展(SVE2) 第二版第二版的简短导言。 您可以在此指南中了解 SVE2 的概念和主要特点、 SVE2 的应用领域以及SVE2 与 SVE2 和 Neon
    发表于 08-02 08:19

    Armv7Armv8系统中跟踪的高级视图详解

    本指南主要介绍Armv7系统和Armv8系统中跟踪的高级视图,最高可达Armv8.4版本。 该指南涵盖: •跟踪是什么以及如何使用 •跟踪体系结构是如何定义的,以及它如何映射到不同的跟踪组件实现 •在Arm系统中可以看到哪些跟踪
    发表于 08-02 06:11

    关于MOS管的基础知识

    文章主要是讲一下关于MOS管的基础知识,例如:MOS管工作原理、MOS管封装等知识
    发表于 05-23 10:09 942次阅读
    <b class='flag-5'>关于</b>MOS管的基础<b class='flag-5'>知识</b>