侵权投诉

1588v2是怎样实现时钟同步的?

2020-10-23 17:42 次阅读

1

什么是1588v2 ?

对于无线通信来说,时钟同步至关重要,是基站正常工作的必要条件。如果同步有问题,轻则切换成功率降低,重则系统无法运行。

从3G/4G以来,随着连接基站和控制器,核心网的传输网络的逐渐IP化,传统的TDM(时分复用,比如SDH等技术)网络承载的时钟功能,也必须在新的分组交换网中得以解决。

其实,在IT业界,这个问题早以太网的发展初期便被提了出来。

1985年,以太网被IEEE(Institute of Electrical and Electronics Engineers,电气和电子工程师协会)标准化为802.3协议;十年之后的1995年,以太网的数据传输速率从10Mbps提高到了100Mbps,在此过程中,计算机和网络业界也在致力于解决以太网的定时同步能力不足的问题。

于是,IEEE便着手制定进行基于分组交换的精密时钟同步标准。

2000年底,网络精密时钟同步委员会成立。

2002年底,该委员会制定的同步标准获得IEEE标准委员会的认证,IEEE1588标准诞生,第一个版本就被称为1588v1。

2008年初,IEEE组织对1588进行了修订并重新发布,这个版本就是目前正在广泛使用的1588v2,可以提供小于100ns的时间同步精度。

IEEE 1588的全称是“IEEE P1588 DM2.2, Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems”,翻译为中文就是:“网络测量和控制系统的精密时钟同步协议”。因此1588协议也被简称作PTP(Precise Time Protocol )协议。

1588协议的基本构思是通过软硬件配合,记录同步时钟信息的发出时间和接收时间,并给每条信息都加上时间标签。有了时间记录,接收方就可以计算出自己在网络中的时钟误差和延时,经过修正之后,就可以实现和网络时钟源同步的目的。

1588v2组网拓扑

2

1588v2 怎样实现时钟同步?

在这样一个复杂的同步网络中,1588主时钟(Master)和从时钟(Slave)主要靠传递Sync,Follow_Up,Delay_Req,以及Delay_Resp这几条消息来实现同步的。

1588v2主从时钟间传递的报文

1588v2的时钟具体的同步原理如下图所示:

1588v2时钟同步原理

1、主时钟向从时钟发出Sync报文,并携带自身的时钟t1;

2、从时钟收到Sync报文,并标注上该时刻自己的时钟t2;

3、从时钟向主时钟发送Delay_Req报文,并携带该时刻自身的时钟t3;

4、主时钟收到Delay_Req报文,并注上该时刻自己的时钟t4;

5、主时钟向从时钟发送Delay_Resp报文,并携带时钟t4;

6、假设从时钟和主时钟两者之间的差值为偏移量offset,主时钟到从时钟的传输时延为t_ms,从时钟到主时钟的传输时延为t_sm,则有下面两个等式:

t2 - t1= t_ms + offset

t4 - t3= t_sm - offset

假设双向时延相同,即:delay = t_ms = t_sm,则可以算出如下结果:

offset = ( ( t2 - t1 ) - ( t4 - t3 ) ) / 2

delay = ( ( t2 - t1 ) + ( t4 - t3 ) ) / 2

有了上述计算结果,然后就可以根据偏移量offset来修正从时钟,就可以实现同步。

需要注意的是,上述结果存在一个假设,那就是上下行的时延delay是一样的,且不同报文间的时延也是相同的。

1588v2主要支持如下3种时钟类型:普通时钟(Ordinary Clock,OC),边界时钟(Boundary Clock, BC),透明时钟(Transparent Clock,TC)。 其中 透明时钟又可分为E2E(End to End)透明时钟,也叫E2E-TC; 以及P2P(Pear to Pear)透明时钟,也叫P2P-TC。

1588v2支持的时钟类型

1、普通时钟(Ordinary Clock,OC)

在一个域中,维护着域内使用的时标,并且只有一个PTP端口的时钟。普通时钟要么作为主时钟提供时钟源,要么作为最末一级终端,从其他的时钟源获取时钟,而不能作为中间节点把时钟向其他节点传递。

1588v2普通时钟架构

2、边界时钟(Boundary Clock,BC)

边界时钟有多个PTP物理通信端口和网络相连,其每个PTP端口和普通时钟的PTP端口是一样的,其中的一个端口在收到上级时钟源的PTP报文后进行终结,然后再生成新的PTP报文并向下传递。

1588v2边界时钟架构

3、透明时钟(Transparent Clock,TC)

透明时钟作为中间节点,收到PTP报文之后不进行终结,其内部有一个驻留时间桥来计算报文在本节点的驻留时间,并以此来修正时间标签再向下传递。

1588v2透明 时钟

透明时钟可分为 E2E (End to End ) 透明时钟,以及P2P(Peer to Peer)透明时钟。两者对于PTP报文时延的修正和处理方法不同,在其他方面是完全一样的。

E2E-TC

E2E透明时钟对时延的修正只包含本节点驻留的时间,而P2P透明时钟对时延的修正除了包含本节点驻留的时间之外,还添加了传输路径上的时延。

P2P-TC

除了上述的几种时钟之外,1588v2还定义了管理节点。 管理节点负责处理PTP管理报文,有一个或者多个物理接口连接网络,可以和任意的时钟类型组合在一起工作。

3

1588v2 有哪些应用场景?

IEEE 1588独立于物理层,可通过在报文中加入时间标签来传递同步信息,因此除了频率同步之外还可以实现时间同步。但在实际应用中由于会受到网络状态的影响,延时,丢包等都会影响到精度,所以通过交换网络来传输时钟有较多限制。

1、全网支持1588v2功能(FTS)

全网支持1588v2功能(FTS,Full Timing Support),是指主时钟和从时钟之间的所有传输设备都支持1588功能,包括边界时钟(BC模式)和透传时钟(TC模式)两种模式。它们的物理拓扑基本相同,仅在PTP协议的处理机制上有所差异。

边界时钟模式(BC模式)下的网络中间节点设备有多个1588端口,其中一个端口作为从时钟和上级时钟保持同步,其他端口则作为下一级网元的主时钟。设备收到1588v2报文之后进行终结,然后生成新的报文再向下游传递。

普通时钟(OC)+边界时钟(BC)组网

透传时钟(TC模式)下的网络节点设备接收到来自时钟源的1588v2报文之后不进行终结,而是根据报文的驻留时间和链路时延,修正报文的时间戳信息,并将其传送给下游设备。

普通时钟(OC ) + 透明时钟(TC ) 组网

边界时钟模式下,由于分组网络的不稳定性,中间节点不可能百分之百地恢复原始时钟,而是存在或多或少的误差,这样传递给下游的时钟就产生了漂移,并且这样的漂移还会随着跳数的增加而不断累积。而透传时钟模式下,中间节点只修正时延,对跳数并不敏感,故其理论上的精度高于边界时钟。

然而在实际使用中,由于边界时钟模式下的漂移是不定向的,可能不断累积增大,也可能多个节点之间产生的漂移可能相互抵消,所以实际上两种模式的精度相当。

2、1588v2 ATR(Auto Timing Recovery,自动定时恢复)

对于第一点全网所有传输节点都支持1588v2协议的场景,毕竟是理想情况,现实总是和理想有所差距的。 如果主时钟和从时钟之间的传输节点不支持1588v2协议,还能怎样实现频率同步和相位同步吗?

答案是,可以。但传输网中的时延,抖动,丢包都会影响时钟精度,只能用于传输负载较小,主从时钟之间的跳数较少的非常有限的场景。

3、1588v2同步是否可以用于5G

理论上来说,1588v2可支持高精度的相位同步,基本能够满足5G的同步需求。

但实际上,分组传输网络需要所有节点都支持PTP协议,组网较为复杂,网络的拥塞,时延,抖动,丢包都会影响时钟精度。更为重要的是,1588v2同步需要上下行链路的时延相等,否 则就需要人工校准,这一点在项目实施中非常困难。

因此,5G网络主流的同步方式是GPS或者北斗这样的GNSS系统。

好了,本期的内容就到这里,希望对大家有所帮助。

责任编辑:haq

收藏 人收藏
分享:

评论

相关推荐

物联网生态对垒硬件厂软件战 5G入口的关键卡位战

随着5G相关产业链技术的进一步商用扩围,对于硬件厂商来说,在软件生态方面的蓄力变得愈发重要。 近日,....
的头像 工程师邓生 发表于 11-25 18:10 170次 阅读
物联网生态对垒硬件厂软件战 5G入口的关键卡位战

移动GPU或成主流趋势,IMG如何赋能国产芯片?

集成电路产业是信息技术产业的核心,在支撑社会经济发展方面意义重大。而半导体知识产权(Silicon ....
的头像 Imagination Tech 发表于 11-25 18:00 220次 阅读
移动GPU或成主流趋势,IMG如何赋能国产芯片?

松下计划把电容器产能提高2成应对5G基站的需求

据日经中文网报道,为应对5G基础设施投资带来的需求增长,松下将增产用于服务器和通信基站的电子零部件,....
的头像 陈翠 发表于 11-25 17:57 132次 阅读
松下计划把电容器产能提高2成应对5G基站的需求

美媒称高通等解决毫米波难题,将反超中国5G

在这个快速发展的时代,不知不觉当中我们已经从2G时代基建迈入5G时代,要知道,在这期间才仅仅过去不到....
发表于 11-25 17:28 45次 阅读
美媒称高通等解决毫米波难题,将反超中国5G

iPhone与安卓手机最大的不同是什么?

今年的iPhone12可谓问题最多的iPhone,上市一个月已被用户投诉出现诸多问题,然而全球各地却....
的头像 我快闭嘴 发表于 11-25 17:21 174次 阅读
iPhone与安卓手机最大的不同是什么?

边缘计算发展的拐点将至?

COVID-19流感大流行几乎没有产生新的技术和商业发展,但它无疑加速了许多已经开始的技术趋势。边缘....
的头像 我快闭嘴 发表于 11-25 17:14 201次 阅读
边缘计算发展的拐点将至?

5G+智能家居:或许噱头多于实际

最近,国内三大运营商的移动及电信公布了10月5G用户的数量。 据数据显示,中国移动5G用户数净增15....
的头像 Les 发表于 11-25 17:01 126次 阅读
5G+智能家居:或许噱头多于实际

政策推动高性能PI薄膜“国产化”,5G换机需求将持续激发市场活力

据碳元科技(高导热石墨膜制造商)的公告数据显示,2019年,公司高导热石墨膜产品的原料占比达74.9....
的头像 牵手一起梦 发表于 11-25 16:54 161次 阅读
政策推动高性能PI薄膜“国产化”,5G换机需求将持续激发市场活力

中国电信超高清视频业务创新能力连续超越同行

近日,在 2020 世界超高清视频(4K/8K)产业发展大会上,经过 CUVA(中国超高清视频产业联....
的头像 lhl545545 发表于 11-25 16:53 128次 阅读
中国电信超高清视频业务创新能力连续超越同行

长盈精密募资19亿元加码新能源汽车及5G智能终端业务

随着18家机构被确定为最终发行对象,历时8个月之久的长盈精密定增终于落下帷幕。日前,苹果、特斯拉供应....
的头像 艾邦产业通 发表于 11-25 16:52 84次 阅读
长盈精密募资19亿元加码新能源汽车及5G智能终端业务

华为三个场景升级组成 5.5G 场景六边形

在 2020 全球移动宽带论坛(Global MBB Forum)上,华为常务董事、产品投资评审委员....
的头像 lhl545545 发表于 11-25 16:47 141次 阅读
华为三个场景升级组成 5.5G 场景六边形

5G+工业互联网安全的新产业如何迈上新台阶?

在今天这个产业发展周期中,消费互联网积累的技术、人才与资本急需进入产业市场;5G 商用之后,需要打开....
的头像 lhl545545 发表于 11-25 16:43 137次 阅读
5G+工业互联网安全的新产业如何迈上新台阶?

网络切片是什么?主要用途和场景又在哪里?

在11月19-21日,中国移动全球合作伙伴大会中国移动研究院展台上进行了业内首个5G终端切片方案目标....
发表于 11-25 16:34 100次 阅读
网络切片是什么?主要用途和场景又在哪里?

登山:5G+工业互联网的产业化新周期

而与以往的通信体系、互联网产业相比,工业互联网产业最大的特点是中国已经取得全面领先,而领先意味着不再....
的头像 机器人大讲堂 发表于 11-25 16:23 137次 阅读
登山:5G+工业互联网的产业化新周期

应用云端化发展会不会成为 5G 应用新趋势?

手机应用作为刚需已经非常普及了,我们在任何状况下,都可以看到人们喜欢手捧手机低头在默默地观看,或轻轻....
的头像 lhl545545 发表于 11-25 16:21 88次 阅读
应用云端化发展会不会成为 5G 应用新趋势?

5G下中国手机配件行业或将迎来“春天”,预计2025年销售额将超1万亿

中国信息通信研究院统计数据显示,自2016以来,中国手机市场出货量均处于下滑态势。2019年全年,国....
的头像 牵手一起梦 发表于 11-25 16:18 129次 阅读
5G下中国手机配件行业或将迎来“春天”,预计2025年销售额将超1万亿

中国移动与中兴通讯签署2021年战略合作协议

近日,中国移动通信集团有限公司与中兴通讯股份有限公司在深圳举行战略合作签约仪式。
的头像 lhl545545 发表于 11-25 16:18 129次 阅读
中国移动与中兴通讯签署2021年战略合作协议

中移物联网携手优必选科技合力打造基于“云-管-边-端”的5G智慧园区新样板

在5G作为国家新基建核心牵引力的今天,各类型园区被定位为“创新高质量发展的主战场”,承担着我国产业转....
的头像 机器人大讲堂 发表于 11-25 16:16 149次 阅读
中移物联网携手优必选科技合力打造基于“云-管-边-端”的5G智慧园区新样板

罗德与施瓦茨从无线技术的大量投资中受益

尽管面临艰难的全球经济环境和新冠疫情带来的挑战,罗德与施瓦茨(Rohde & Schwarz)在 2....
的头像 lhl545545 发表于 11-25 16:14 118次 阅读
罗德与施瓦茨从无线技术的大量投资中受益

诺基亚仅连通性方面的研发支出每年就高达 40 亿美元

众所周知,5G 代表了未来技术发展趋势,通信技术专利之争正加剧,尤其是在 5G 普及的关键时期。
的头像 lhl545545 发表于 11-25 16:08 81次 阅读
诺基亚仅连通性方面的研发支出每年就高达 40 亿美元

中国移动发布《5G 加出新动能行业标杆》发挥典型示范作用

由工业和信息化部、湖北省人民政府联合主办的 2020 中国 5G+工业互联网大会在湖北武汉顺利召开。
的头像 lhl545545 发表于 11-25 16:05 147次 阅读
中国移动发布《5G 加出新动能行业标杆》发挥典型示范作用

紫光展锐5G终端切片目标方案有何优势?

近日,中国移动联合展锐、中兴通讯等产业链合作伙伴共同完成了业界首个5G终端切片目标方案的应用演示。
的头像 我快闭嘴 发表于 11-25 15:57 129次 阅读
紫光展锐5G终端切片目标方案有何优势?

2020世界互联网大会发展报告正式对外公开

2020 世界互联网大会上,由中国网络空间研究院编纂,北京邮电大学、国家工业信息安全发展研究中心、北....
的头像 lhl545545 发表于 11-25 15:56 190次 阅读
2020世界互联网大会发展报告正式对外公开

5G消息的商业模式将如何构建?

2020年4月8日,三大运营商首次联合推出了《5G消息白皮书》,5G消息这一概念开始被大众所熟知,并....
发表于 11-25 15:45 357次 阅读
5G消息的商业模式将如何构建?

中国移动与华为等3家合作伙伴完成首批 5G 联合实验室认证

中国移动“云集精彩共赢 5G 未来”产品创新开放合作论坛在穗召开,宣布 5G 业务与终端联合创新合作....
的头像 lhl545545 发表于 11-25 15:35 178次 阅读
中国移动与华为等3家合作伙伴完成首批 5G 联合实验室认证

华为近日为何入股润华全芯微电子?

华为哈勃近日入股润华全芯微电子,值得注意的是,后者经营范围包含半导体芯片生产设备。11 月 23 日....
的头像 lhl545545 发表于 11-25 15:31 296次 阅读
华为近日为何入股润华全芯微电子?

大富科技助力蚌埠5G产业加快发展、朝着千亿级目标迈进

贺高标清楚地记得,自己2004年刚刚进入滤波器行业时,滤波器的价格少则8000多元,多则1.5万元以....
的头像 MEMS 发表于 11-25 15:26 109次 阅读
大富科技助力蚌埠5G产业加快发展、朝着千亿级目标迈进

派拓网络宣布推出业界首款 5G 原生安全产品

全球网络安全领导企业 Palo Alto Networks(纽交所代码:PANW)(派拓网络)日前宣....
的头像 lhl545545 发表于 11-25 15:26 73次 阅读
派拓网络宣布推出业界首款 5G 原生安全产品

网络切片和 MEC 能力将助力运营商探索新的业务机会

为了服务市民、企业和中央政府,北京市制定了雄心勃勃的智慧城市计划目标。该计划的重点聚焦于智能交通,智....
的头像 lhl545545 发表于 11-25 15:22 130次 阅读
网络切片和 MEC 能力将助力运营商探索新的业务机会

浅谈CH 系列微波电阻器独特之处

日前,Vishay Intertechnology, Inc.(NYSE 股市代号:VSH)宣布,推....
的头像 lhl545545 发表于 11-25 15:15 120次 阅读
浅谈CH 系列微波电阻器独特之处

中关村示范区在5G等方面已取得一系列进展

在近日北京举行的中关村5G创新应用大赛上,中关村管委会二级巡视员刘航在致辞中表示,中关村示范区在5G....
的头像 MEMS 发表于 11-25 15:14 148次 阅读
中关村示范区在5G等方面已取得一系列进展

云塔电子科技成功研制出全球首对5G与WiFi共存滤波器模组

此前,对于传统的滤波器技术,无论是宽带滤波器(SPD/LTCC)还是窄带滤波器(SAW/FBAR/B....
的头像 MEMS 发表于 11-25 15:05 161次 阅读
云塔电子科技成功研制出全球首对5G与WiFi共存滤波器模组

中国电信5G+云网融合突破产业边界

数字时代,新的旅游消费需求正在不断积聚。近日召开的国务院常务会议指出,旅游消费潜力巨大。为促进常态化....
的头像 lhl545545 发表于 11-25 15:02 123次 阅读
中国电信5G+云网融合突破产业边界

网络切片发挥5G真正潜能,紫光展锐推出全球首款5G切片方案

4G和5G之间,可以用“大锅饭”和“自助餐”形象地做比喻。具体而言,用户在使用4G网络时,无法选择自....
的头像 牵手一起梦 发表于 11-25 14:55 109次 阅读
网络切片发挥5G真正潜能,紫光展锐推出全球首款5G切片方案

中国移动边缘计算通用平台OpenSigma推出,助力“5G+边缘计算”落地

11月19日至21日,在广州举行的2020中国移动全球合作伙伴大会上,中国移动通信研究院和中移物联网....
的头像 牵手一起梦 发表于 11-25 14:51 117次 阅读
中国移动边缘计算通用平台OpenSigma推出,助力“5G+边缘计算”落地

现在买iPhone11系列落伍吗?

iPhone 发展到现在已经13个年头了,你对每一代 iPhone 都了解吗,不妨来回顾一下这些年 ....
的头像 哎咆科技 发表于 11-25 14:47 303次 阅读
现在买iPhone11系列落伍吗?

诺基亚知名高管将于2021年一季度末离职

诺基亚失去了另一位知名高管,长期任职的首席技术官、贝尔实验室负责人马库斯·韦尔登(Marcus We....
的头像 lhl545545 发表于 11-25 14:31 69次 阅读
诺基亚知名高管将于2021年一季度末离职

中国电信根据需求开发实时动态开关5G基站的节能平台

年初以来,中国电信江苏公司围绕效益目标,以技术节能、转供电改造、低效设备清理、网络优化等举措为抓手,....
的头像 lhl545545 发表于 11-25 14:21 137次 阅读
中国电信根据需求开发实时动态开关5G基站的节能平台

万兆以太网口静电保护设计方案图

万兆(10G)以太网口ESD静电浪涌保护方案,如下图: 从万兆(10G)以太网口ESD静电浪涌保护方案图中可以看出,电路...
发表于 11-25 14:15 0次 阅读
万兆以太网口静电保护设计方案图

“差评”不断的iPhone12该不该换?

每次新手机发布后,就觉得自己旧机变得不那么可爱的人,肯定不止我一个。 出现这种想法,很多时候,不仅是....
的头像 哎咆科技 发表于 11-25 14:14 99次 阅读
“差评”不断的iPhone12该不该换?

室内5G为什么如此重要?

室内蜂窝系统已经存在了几十年。但是,随着时代从4G向5G的转变,人们普遍认为它们将变得更加必要和广泛....
发表于 11-25 14:05 73次 阅读
室内5G为什么如此重要?

中兴通讯发布绿色5G白皮书,通过创新实现节能降耗的可行性

11月24日,中兴通讯与全球领先的电信、媒体、和技术(TMT)研究机构GSMA智库(GSMA Int....
的头像 牵手一起梦 发表于 11-25 13:54 158次 阅读
中兴通讯发布绿色5G白皮书,通过创新实现节能降耗的可行性

国星Mini LED商业化再提速

然而,纵观Mini LED,从概念推出至今已有4年时间,现阶段依旧主要应用于对价格不敏感的专显市场,....
发表于 11-25 13:47 92次 阅读
国星Mini LED商业化再提速

苹果正在考虑做中端定位的产品

纵观手机行业,做中低端产品的企业不少,但是没有人能做到像小米一样,性价比之王的称号不是开玩笑的,在国....
的头像 我快闭嘴 发表于 11-25 12:14 243次 阅读
苹果正在考虑做中端定位的产品

华为Mate40系列的芯片卖完了怎么办?

这可能对于已经进入“5G时代”的中国市场来说是一件比较奇葩的事情,过去两年的时间所有的国产手机厂商都....
的头像 我快闭嘴 发表于 11-25 12:09 794次 阅读
华为Mate40系列的芯片卖完了怎么办?

张亚勤世界互联网大会谈AI:人工智能技术的发展趋势

11月25日消息,11月23日至24日,一年一度的世界互联网大会互联网发展论坛如期召开。在24日上午....
的头像 璟琰乀 发表于 11-25 12:05 296次 阅读
张亚勤世界互联网大会谈AI:人工智能技术的发展趋势

无人矿车自动驾驶“全网协作”打造中国联通首例5G跨域专网

11月24日,三一智矿科技有限公司(简称三一智矿)携手中国联通第一次将5G无人矿车自动驾驶展露在ba....
的头像 lhl545545 发表于 11-25 11:48 156次 阅读
无人矿车自动驾驶“全网协作”打造中国联通首例5G跨域专网

江苏连云港移动通信服务全省名列前茅

中国移动江苏公司连云港分公司徐圩分局高公岛支局位于祖国的黄海边、地处江苏省连云港市连云区最东端,是徐....
的头像 lhl545545 发表于 11-25 11:41 125次 阅读
江苏连云港移动通信服务全省名列前茅

如何加速5G与重点行业的融合创新?

5G仅仅是下载视频更快、玩游戏更顺畅?当然不是。5G消息、5GtoB Suite、5G Capita....
的头像 lhl545545 发表于 11-25 11:30 117次 阅读
如何加速5G与重点行业的融合创新?

湖北省工业互联网安全监测与态势感知平台正式上线

2020年11月19日,由湖北省通信管理局建设的湖北省工业互联网安全监测与态势感知平台在2020中国....
的头像 lhl545545 发表于 11-25 11:25 80次 阅读
湖北省工业互联网安全监测与态势感知平台正式上线

移远通信全球数字经济和物联网行业发展如火如荼

11月23日,移远通信佛山研发中心开业盛典在广东佛山南海区三山科创中心隆重举行,业务版图再下一城。来....
发表于 11-25 11:22 131次 阅读
移远通信全球数字经济和物联网行业发展如火如荼

工业以太网远程IO模块

发表于 11-20 11:39 101次 阅读
工业以太网远程IO模块

千兆以太网端口浪涌静电保护电路

  防护等级   1 浪涌防护等级 10/700uS 共模6KV,差模2KV  2 静电防护等级 接触8KV 空气1...
发表于 11-04 10:46 192次 阅读
千兆以太网端口浪涌静电保护电路

新以太网供电标准是什么

今年的7月份标志着IEEE 802.3bt建立6周年,IEEE标准项目将要使四对线以太网供电(PoE)标准化。 当我在2012年7月参加...
发表于 11-03 08:14 0次 阅读
新以太网供电标准是什么

IEEE8023btPoE的基础知识介绍

以太网供电(PoE)是IEEE 802.3af和802.3at标准定义的一种联网功能。PoE使以太网电缆可以通过现有数据连接同时向网络设备...
发表于 10-28 08:18 0次 阅读
IEEE8023btPoE的基础知识介绍

PM44-11BP以太网变压器是和网络接口连接的嘛

[table] [tr][td] PM44-11BP以太网变压器是和网络接口连接的嘛,有没有人有这个芯片的详细资料,好像网上没找到这个芯片...
发表于 10-24 18:19 282次 阅读
PM44-11BP以太网变压器是和网络接口连接的嘛

PM44-11BP以太网变压器是和网络接口连接的嘛

PM44-11BP以太网变压器是和网络接口连接的嘛,有没有人有这个芯片的详细资料,好像网上没找到这个芯片的电路图,这个都没说...
发表于 10-22 11:15 148次 阅读
PM44-11BP以太网变压器是和网络接口连接的嘛

避免无线通信时的同频干扰的方法有哪些?

      在物联网高速发展的现在,各个频段的应用几乎达到了极致,这就导致了不同模块之间的相互干扰,对于滤...
发表于 10-22 06:15 0次 阅读
避免无线通信时的同频干扰的方法有哪些?

大联大诠鼎 Semtech (AcSip) S76G 试用 结项

首先感谢电子发烧友与大联大提供的这次Semtech(AcSip) S76G开发板试用机会。经过近2个月对该开发套件的初步学习和了解,对L...
发表于 10-20 15:41 0次 阅读
大联大诠鼎 Semtech (AcSip) S76G 试用 结项

确定哪种PoE变压器最佳:反激还是正激?

随着物联网的不断发展,工程师在基于以太网供电(PoE)的设计中面临着越来越多的变压器拓扑选择。 该变压器是一种电气设备,具...
发表于 09-16 10:07 969次 阅读
确定哪种PoE变压器最佳:反激还是正激?

NB4N7132 用于光纤通道,千兆以太网,HDTV和SATA的链路复制器(1.5 Gbps)

信息 NB4N7132是一款高性能3.3V串行链路复制器,提供光纤通道,GbE,HDTV和SATA应用中常见的串行环路复制和串行环回控制功能。其他流行的应用包括用于在内部和外部连接器之间进行路由的主机总线适配器,以及冗余交换矩阵卡之间的热插拔链路。 IN被发送到OUT0和OUT1;当HIGH为高电平时,每个输出由OE0和OE1使能。 OUT0可以通过MUX0引脚选择IN或IN1。同样,OUT1可以通过MUX1引脚在IN或IN0之间进行选择。 Out可以在IN0和IN1之间进行选择。在Link Replicator应用程序中,例如Line Card到Switch Card链接,IN被传输到OUT0和OUT1,在OUT中选择IN0或IN1。在主机适配器应用程序中,IN转到OUT0(内部连接器),它返回IN0上的数据。 IN0循环到OUT1(外部连接器),它在IN1上返回数据,然后返回到OUT上的SerDes。 NB4N7132采用4.7 mm x 9.7 mm TSSOP-28封装。 工作范围:VCC = 3.135 V至3.465 V 复制光纤通道,千兆以太网,HDTV和Serial ATA( SATA)链接 无需外部组件...
发表于 04-18 20:58 85次 阅读
NB4N7132 用于光纤通道,千兆以太网,HDTV和SATA的链路复制器(1.5 Gbps)

AD9553 灵活的时钟转换器,适合GPON、基站、SONET/SDH、T1/E1和以太网应用

和特点 输入频率范围:8 kHz至710 MHz 输出频率最高达810 MHz 预设的引脚可编程频率转换比支持常见的有线和无线频率应用,包括xDSL、T1/E1、BITS、SONET和以太网。 通过SPI端口设置任意频率转换比 片内VCO 接受适合保持应用的晶振输入 两路单端(或一路差分)参考输入 两路时钟输出(可独立编程为LVDS、LVPECL或CMOS) 三线式SPI兼容型编程接口 3.3 V单电源 极低功耗:<450 mW(大部分条件下) 欲了解更多特性,请参考数据手册产品详情 AD9553是一款基于锁相环(PLL)的时钟转换器,针对无源光纤网络(PON)和基站的需要而设计。该器件采用整数N分频PLL来支持适用的频率转换要求。用户通过REFA和REFB输入提供最多两路单端输入参考信号或一路差分输入参考信号。该器件允许用户将一个25 MHz晶振连接到XTAL输入,因而支持保持应用。                                    AD9553是引脚可编程器件,提供从15个可能的输入频率到51个可能的输出频率对(OUT1和OUT2)的标准输入/输出频率转换矩阵。该器件还有一个三线式SPI接口,用户可以通过该接口自定义...
发表于 02-22 15:52 68次 阅读
AD9553 灵活的时钟转换器,适合GPON、基站、SONET/SDH、T1/E1和以太网应用

ADSP-SC589 双核SHARC+和ARM Cortex-A5 SOC、双通道DDR、2x以太网、2xUSB、SDIO、PCIe、529-cspBGA

和特点 双核SHARC+基础架构: 每个内核450 MHz (2.7GFLOPS) 支持奇偶校验的5Mb/640KB L1存储器/内核 可选缓存/SRAM模式 支持32、40和64位浮点ARM内核基础架构: 450 MHz ARM Cortex-A5(具有Neon/FPU) 32kByte/32kByte L1指令/数据缓存 256kByte L2缓存共享的系统存储空间 256KB L2 SRAM,带ECC保护功能最多两个高速存储控制器 DDR3-900、DDR2-800和LPDDR(16位)高级硬件加速器 FFT/iFFT(18 GFLOPS,每个1K-pt FFT 5usec) FIR/IIR和SINC滤波器、ASRC 带OTP的安全加密引擎封装 19mm x 19mm BGA(0.8mm间距) 商用、工业和汽车主要连接和接口: 2个以太网MAC 一个千兆(RGMII)和一个10/100 (RMII) 支持IEEE-1588和AVB(QoS和时钟恢复) 2个USB2.0 HS OTG/设备控制器(MAC/PHY) 2个CAN2.0 SD/SDIO/MMC/eMMC(支持SDXC) PCIe2.0(1通道)(仅SC589) 最多8个全SPORT接口(提供TDM和I2S模式) S/PDIF Tx/Rx、8个ASRC对、PCG 2个双通道SPI和1个四通道SPI(提供直接执行功...
发表于 02-22 15:04 322次 阅读
ADSP-SC589 双核SHARC+和ARM Cortex-A5 SOC、双通道DDR、2x以太网、2xUSB、SDIO、PCIe、529-cspBGA

ADSP-SC584 双核SHARC+和ARM Cortex-A5 SOC、DDR、以太网、USB、349-cspBGA

和特点 双核SHARC+基础架构: 每个内核450 MHz (2.7GFLOPS) 支持奇偶校验的5Mb/640KB L1存储器/内核 可选缓存/SRAM模式 支持32、40和64位浮点 ARM内核基础架构: 450 MHz ARM Cortex-A5(具有Neon/FPU) 32kByte/32kByte L1指令/数据缓存 256kByte L2缓存 共享的系统存储器 256KB L2 SRAM,带ECC保护功能 最多两个高速存储控制器 DDR3-900、DDR2-800和LPDDR(16位) 高级硬件加速器 FFT/iFFT(18 GFLOPS,每个1K-pt FFT 5usec) FIR/IIR和SINC滤波器、ASRC 带OTP的安全加密引擎 封装 19mm x 19mm BGA(0.8mm间距) 商用、工业和汽车 主要连接和接口: 千兆以太网MAC (RGMII) 支持IEEE-1588和AVB(QoS和时钟恢复) USB2.0 HS OTG/设备控制器(MAC/PHY) ) 2个CAN2.0 MLB 3/6引脚(仅限于自动器件) 最多8个全SPORT接口(提供TDM和I2S模式) S/PDIF Tx/Rx、8个ASRC对、PCG 2个双通道SPI和1个四通道SPI(提供直接执行功能) 3个I2C 和3个UART(提供流量控制功能) 增强型...
发表于 02-22 14:49 193次 阅读
ADSP-SC584 双核SHARC+和ARM Cortex-A5 SOC、DDR、以太网、USB、349-cspBGA

ADSP-SC583 双核SHARC+和ARM Cortex-A5 SOC、DDR、以太网、USB、349-cspBGA

和特点 双核SHARC+基础架构: 每个内核最高450 MHz (2.7GFLOPS) 支持奇偶校验的3Mb/384KB L1存储器/内核 可选缓存/SRAM模式 支持32、40和64位浮点 ARM内核基础架构: 最高450 MHz ARM Cortex-A5(具有Neon/FPU) 32kByte/32kByte L1指令/数据缓存 256kByte L2缓存共享的系统存储器 256KB L2 SRAM,带ECC保护功能 一个速度存储控制器 DDR3-900、DDR2-800和LPDDR(16位) 高级硬件加速器 FFT/iFFT(18 GFLOPS,每个1K-pt FFT 5usec) FIR/IIR和SINC滤波器、ASRC 带OTP的安全加密引擎 封装 19mm x 19mm BGA(0.8mm间距) 商用、工业和汽车 主要连接和接口: 千兆以太网MAC (RGMII) 支持IEEE-1588和AVB(QoS和时钟恢复) 2个USB2.0 HS OTG/设备控制器(MAC/PHY) 2个CAN2.0 MLB 3/6引脚(仅限于自动器件) 最多8个全SPORT接口(提供TDM和I2S模式) S/PDIF Tx/Rx、8个ASRC对、PCG 2个双通道SPI和1个四通道SPI(提供直接执行功能) 3个 I2C 和3个UART(提供流量控制功能) ...
发表于 02-22 14:48 113次 阅读
ADSP-SC583 双核SHARC+和ARM Cortex-A5 SOC、DDR、以太网、USB、349-cspBGA

ADSP-SC582 单核SHARC+和ARM Cortex-A5 SOC、DDR、以太网、USB、349-cspBGA

和特点 双核SHARC+基础架构: 每个内核450 MHz (2.7GFLOPS) 支持奇偶校验的5Mb/640KB L1存储器/内核 可选缓存/SRAM模式 支持32、40和64位浮点 ARM内核基础架构: 450 MHz ARM Cortex-A5(具有Neon/FPU) 32kByte/32kByte L1指令/数据缓存 256kByte L2缓存 共享的系统存储器 256KB L2 SRAM,带ECC保护功能 一个速度存储控制器 DDR3-900、DDR2-800和LPDDR(16位) 高级硬件加速器 FFT/iFFT(18 GFLOPS,每个1K-pt FFT 5usec) FIR/IIR和SINC滤波器、ASRC 带OTP的安全加密引擎 封装 19mm x 19mm BGA(0.8mm间距) 商用、工业 主要连接和接口: 千兆以太网MAC (RGMII) 支持IEEE-1588和AVB(QoS和时钟恢复) USB2.0 HS OTG/设备控制器(MAC/PHY) 2个CAN2.0 最多8个全SPORT接口(提供TDM和I2S模式) S/PDIF Tx/Rx、8个ASRC对、PCG 2个双通道SPI和1个四通道SPI(提供直接执行功能) 3个 I2C 和 3个UART(提供流量控制功能) 增强型并行外设接口 用于视频I/O或并行转换器接口...
发表于 02-22 14:48 183次 阅读
ADSP-SC582 单核SHARC+和ARM Cortex-A5 SOC、DDR、以太网、USB、349-cspBGA

ADSP-SC573 双核SHARC+(带768KB L1)、ARM Cortex-A5、1MB共用的L2、DDR、千兆以太网、USB、SDIO、400-cspBGA

和特点 系统特性 两个增强型SHARC+高性能浮点内核 ARM Cortex-A5内核 强大的DMA系统 片内存储器保护 集成安全特性 17 mm × 17 mm 400引脚CSP_BGA和176引脚LQFP_EP封装,符合RoHS标准 系统功耗低,汽车应用温度范围存储器 最多1 MB的大容量片内L2 SRAM,具有ECC保护功能 一个针对低系统功耗而优化的L3接口,提供与DDR3(支持1.5 V DDR3L器件)、DDR2或LPDDR1 SDRAM器件相连的16位接口其他特性 安全和保护 加密硬件加速器 快速安全引导,支持IP保护 支持ARM TrustZone 加速器 FIR、IIR加速引擎 产品详情 ADSP-SC57x/ADSP-2157x处理器属于SHARC®系列产品。ADSP-SC57x处理器基于SHARC+®双核和ARM®Cortex®-A5内核。ADSP-SC57x/ADSP-2157x SHARC处理器属于单指令多数据(SIMD) SHARC系列数字信号处理器(DSP),采用ADI公司的Super Harvard架构。这些32/40/64位浮点处理器针对高性能音频/浮点应用进行了优化,具有大容量片内静态随机存取存储器(SRAM),可消除输入/输出(I/O)瓶颈的多条内部总线,并且提供创新的数字音...
发表于 02-22 14:47 63次 阅读
ADSP-SC573 双核SHARC+(带768KB L1)、ARM Cortex-A5、1MB共用的L2、DDR、千兆以太网、USB、SDIO、400-cspBGA

ADSP-SC571 双核SHARC+(带768KB L1)、ARM Cortex-A5、1MB共用的L2、10/100以太网、176-LQFP

和特点 系统特性   两个增强型SHARC+高性能浮点内核 ARM Cortex-A5内核 强大的DMA系统 片内存储器保护 集成安全特性 17 mm × 17 mm 400引脚CSP_BGA和176引脚LQFP_EP封装,符合RoHS标准 系统功耗低,汽车应用温度范围存储器 最多1 MB的大容量片内L2 SRAM,具有ECC保护功能 一个针对低系统功耗而优化的L3接口,提供与DDR3(支持1.5 V DDR3L器件)、DDR2或LPDDR1 SDRAM器件相连的16位接口其他特性 安全和保护 加密硬件加速器 快速安全引导,支持IP保护 支持ARM TrustZone 加速器 FIR、IIR加速引擎 产品详情 ADSP-SC57x/ADSP-2157x处理器属于SHARC®系列产品。ADSP-SC57x处理器基于SHARC+®双核和ARM®Cortex®-A5内核。ADSP-SC57x/ADSP-2157x SHARC处理器属于单指令多数据(SIMD) SHARC系列数字信号处理器(DSP),采用ADI公司的Super Harvard架构。这些32/40/64位浮点处理器针对高性能音频/浮点应用进行了优化,具有大容量片内静态随机存取存储器(SRAM),可消除输入/输出(I/O)瓶颈的多条内部总线,并且提供创新的...
发表于 02-22 14:47 242次 阅读
ADSP-SC571 双核SHARC+(带768KB L1)、ARM Cortex-A5、1MB共用的L2、10/100以太网、176-LQFP

ADSP-SC572 单核SHARC+(带384KB L1)、ARM Cortex-A5、1MB共用的L2、DDR、千兆以太网、USB、SDIO、400-cspBGA

和特点 两个增强型SHARC+高性能浮点内核 每个SHARC+内核最高达500 MHz 每个内核最多有3 Mb (384 kB) L1 SRAM存储器,支持奇偶校验,可配置为缓存(可选功能) 支持32位、40位和64位浮点 32位定点 字节、短字、字、长字寻址 ARM Cortex-A5内核500 MHz/800 DMIPS,支持NEON/VFPv4-D16/Jazelle支持奇偶校验的32 kB L1指令缓存/支持奇偶校验的32 kB L1数据缓存支持奇偶校验的256 kB L2缓存强大的DMA系统片内存储器保护集成安全特性17 mm × 17 mm 400引脚CSP_BGA和176引脚LQFP_EP封装,符合RoHS标准在汽车应用温度范围内的系统功耗低存储器 最多1 MB的大容量片内L2 SRAM,具有ECC保护功能 一个针对低系统功耗而优化的L3接口,提供与DDR3(支持1.5 V DDR3L器件)、DDR2或LPDDR1 SDRAM器件相连的16位接口 其他特性 安全和保护 加密硬件加速器 快速安全引导,支持IP保护 支持ARM TrustZone 加速器 FIR、IIR加速引擎 产品详情 ADSP-SC57x/ADSP-2157x处理器属于SHARC®系列产品。ADSP-SC57x处理器基于SHARC+®双核和ARM®...
发表于 02-22 14:47 82次 阅读
ADSP-SC572 单核SHARC+(带384KB L1)、ARM Cortex-A5、1MB共用的L2、DDR、千兆以太网、USB、SDIO、400-cspBGA

ADSP-SC570 单核SHARC+(带384KB L1)、ARM Cortex-A5、1MB共用的L2、10/100以太网、176-LQFP

和特点 系统特性 两个增强型SHARC+高性能浮点内核 ARM Cortex-A5内核 强大的DMA系统 片内存储器保护 集成安全特性 17 mm × 17 mm 400引脚CSP_BGA和176引脚LQFP_EP封装,符合RoHS标准 系统功耗低,汽车应用温度范围存储器 最多1 MB的大容量片内L2 SRAM,具有ECC保护功能 一个针对低系统功耗而优化的L3接口,提供与DDR3(支持1.5 V DDR3L器件)、DDR2或LPDDR1 SDRAM器件相连的16位接口其他特性 安全和保护 加密硬件加速器 快速安全引导,支持IP保护 支持ARM TrustZone 加速器 FIR、IIR加速引擎 产品详情 ADSP-SC57x/ADSP-2157x处理器属于SHARC®系列产品。ADSP-SC57x处理器基于SHARC+®双核和ARM®Cortex®-A5内核。ADSP-SC57x/ADSP-2157x SHARC处理器属于单指令多数据(SIMD) SHARC系列数字信号处理器(DSP),采用ADI公司的Super Harvard架构。这些32/40/64位浮点处理器针对高性能音频/浮点应用进行了优化,具有大容量片内静态随机存取存储器(SRAM),可消除输入/输出(I/O)瓶颈的多条内部总线,并且提供创新的数...
发表于 02-22 14:47 53次 阅读
ADSP-SC570 单核SHARC+(带384KB L1)、ARM Cortex-A5、1MB共用的L2、10/100以太网、176-LQFP

LTC4267 具集成型开关稳压器的以太网供电 IEEE 802.3af PD 接口

和特点 用于 IEEE 802®.3af 受电设备 (PD) 的完整电源接口端口内置 100V、400mA UVLO 开关精准的双级浪涌电流限值集成型电流模式开关稳压器具停用功能的内置 25kΩ 特征电阻器可编程分级电流 (Class 0 至 4)热过载保护电源良好信号集成型误差放大器和电压基准扁平 16 引脚 SSOP 封装和 3mm x 5mm DFN封装 产品详情 LTC®4267 整合了一个符合 IEEE 802.3af 标准的受电设备 (PD) 接口和一个电流模式开关稳压器,从而提供了一款面向 PD 应用的完整电源解决方案。LTC4267 集成了 25kΩ 特征电阻器、分级电流源、热过载保护、签名停用和电源良好信号、以及专为与 IEEE 标准所要求的二极管电桥配合使用而优化的欠压闭锁电路。精准的双级输入电流限值允许 LTC4267 为大的负载电容器充电并与老式的 PoE 系统相接。电流模式开关稳压器设计用于驱动一个 6V 额定电压的 N 沟道 MOSFET,并具有可编程斜坡补偿、软起动和恒定频率运作功能,即使在轻负载条件下亦可最大限度地降低噪声。LTC4267 包括一个内置误差放大器和电压基准,因而可在隔离式及非隔离式配置中使用。LTC4267 采用节省空间的扁平 16 引脚 SSOP 封装或 ...
发表于 02-22 14:40 40次 阅读
LTC4267 具集成型开关稳压器的以太网供电 IEEE 802.3af PD 接口

LTC4267-1 具集成型开关稳压器的以太网供电 IEEE 802.3af PD 接口

和特点 用于 IEEE 802®.3af 受电设备 (PD) 的完整电源接口端口内置 100V、UVLO 开关精准的双级浪涌电流限值集成型电流模式开关稳压器具停用功能的内置 25kΩ 特征电阻器可编程分级电流 (Class 0 至 4)热过载保护电源良好信号集成型误差放大器和电压基准扁平 16 引脚 SSOP 封装 产品详情 LTC®4267-1 整合了一个符合 IEEE 802.3af 标准的受电设备 (PD) 接口和一个电流模式开关稳压器,从而提供了一款面向 PD 应用的完整电源解决方案。LTC4267-1 集成了 25kΩ 特征电阻器、分级电流源、热过载保护、签名停用和电源良好信号、以及专为与 IEEE 标准所要求的二极管电桥配合使用而优化的欠压闭锁电路。LTC4267-1 提供了一个加大的工作电流限值,可为 Class 3 应用提供最大的可用功率。电流模式开关稳压器设计用于驱动一个 6V 额定电压的 N 沟道 MOSFET,并具有可编程斜坡补偿、软起动和恒定频率运作功能,即使在轻负载条件下亦可最大限度地降低噪声。LTC4267-1 包括一个内置误差放大器和电压基准,因而可在隔离式及非隔离式配置中使用。LTC4267-1 采用节省空间的扁平 16 引脚 SSOP 封装。应用IP 电话的电源管理无线...
发表于 02-22 14:39 40次 阅读
LTC4267-1 具集成型开关稳压器的以太网供电 IEEE 802.3af PD 接口

LTC4257 IEEE 802.3af PD 以太网供电接口控制器

和特点 用于 IEEE 802.3af® 受电设备 (PD) 的完整电源接口端口片内 100V、400mA 功率 MOSFET精准的输入电流限值片内 25k 特征电阻器可编程分级电流 (Class 0 至 4)欠压闭锁智能型热保护电源良好信号采用 8 引脚 SO 封装和扁平 (3mm x 3mm) DFN封装 产品详情 LTC®4257 为在 IEEE 802.3af 以太网供电 (PoE) 系统中工作的器件提供了完整的签名和电源接口功能。LTC4257 通过将 25k 特征电阻器、分级电流源、具热折返的输入电流限制电路、欠压闭锁以及电源良好信号传输功能全部集成在一个 8 引脚封装中而使受电设备 (PD) 设计得以简化。通过采用一个片内高电压功率 MOSFET,LTC4257 不仅能够为系统设计师降低成本,还可节省电路板的占用空间。 LTC4257 能够直接与凌力尔特的各种 DC/DC 转换器产品相连,以便为 IP 电话、无线接入点及其他 PD 提供一种具成本效益的电源解决方案。另外,凌力尔特还凭借四通道网络电源控制器提供了面向供电设备 (PSE) 应用的解决方案。LTC4257 采用 8 引脚 SO 封装和扁平 (3mm x 3mm) DFN封装。应用IP 电话的电源管理无线接入点电信电源控制 方框图...
发表于 02-22 14:39 46次 阅读
LTC4257 IEEE 802.3af PD 以太网供电接口控制器

LTC4257-1 具有双电流限值的IEEE 802.3af PD 以太网供电接口控制器

和特点 用于 IEEE 802®.3af 受电设备 (PD) 的完整电源接口端口 片内 100V、400mA 功率 MOSFET 精准的双电平电流限值 带失效功能的 25k 片内特征电阻器 可编程分级电流 (第 1 至 4 级) 欠压闭锁 热过载保护 电源状态良好信号 采用 8 引脚 SO 封装 产品详情 LTC®4257-1为在 IEEE 802.3af 以太网供电 (PoE) 系统中工作的器件提供了完整的签名和电源接口功能。LTC4257-1 通过将 25k 特征电阻器、分级电流源、输入电流限值、欠压闭锁、热过载保护、特征电阻器失效以及电源状态良好信号指示全部集成在一个 8 引脚封装中而使受电设备 (PD) 设计得以简化。LTC4257-1采用了一个精准的双电平电流限值电路。这使得它能够在保持与当前的 IEEE 802.3af 规格的兼容性的同时对大负载电容器进行充电并与老式的以太网供电系统相连。通过采用一个片内高压功率 MOSFET,LTC4257-1不仅能够为系统设计师降低成本,还能够节省电路板的占用空间。LTC4257-1能够直接与凌特公司的各种 DC/DC 转换器产品相连,以便为 IP 电话、无线接入点及其它 PD 提供一个成本效益型的电源解决方案。凌特公司还可为供电设备 (PSE) 应用提供网络电源...
发表于 02-22 14:39 40次 阅读
LTC4257-1 具有双电流限值的IEEE 802.3af PD 以太网供电接口控制器

LTC4267-3 具集成型开关稳压器的以太网供电 IEEE 802.3af PD 接口

和特点 用于 IEEE 802®.3af 受电设备 (PD) 的完整电源接口端口内置 100V、UVLO 开关300kHz 恒定频率运作精准的双级浪涌电流限值集成型电流模式开关稳压器具停用功能的内置 25k 特征电阻器可编程分级电流 (Class 0 至 4)热过载保护电源良好信号集成型误差放大器和电压基准扁平 16 引脚 SSOP 封装或 DFN 封装 产品详情 LTC®4267-3 整合了一个符合 IEEE 802.3af 标准的受电设备 (PD) 接口和一个 300kHz 电流模式开关稳压器,从而提供了一款面向 PD 应用的完整电源解决方案。LTC4267-3 集成了 25k 特征电阻器、分级电流源、热过载保护、签名停用和电源良好信号、以及专为与 IEEE 标准所要求的二极管电桥配合使用而优化的欠压闭锁电路。LTC4267-3 提供了一个加大的工作电流限值,可为 Class 3 应用提供最大的可用功率。与其较低频率的同类器件相比,300kHz 电流模式开关稳压器可提供较高的输出功率或较小的外部组件尺寸。LTC4267-3 设计用于驱动一个额定电压为 6V 的 N 沟道 MOSFET,并具有可编程斜坡补偿、软起动和恒定频率运作功能,即使在轻负载条件下亦可最大限度地降低噪声。LTC4267-3 包括一个内置误差放大...
发表于 02-22 14:37 175次 阅读
LTC4267-3 具集成型开关稳压器的以太网供电 IEEE 802.3af PD 接口

LTC4266 四通道 IEEE 802.3at 以太网供电控制器

和特点 4 个独立的 PSE 通道 符合 IEEE 802.at Type 1 和 Type 2 标准 0.34Ω 总通道电阻 每个端口的消耗功率为 130mW (在 600mA) 高级电源管理 8 位可编程电流限值 (ILIM) 7 位可编程过载电流 (ICUT) 预选端口的快速关断 14.5 位端口电流 / 电压监视 两事件分级 非常高可靠性的 4 点 PD 检测: 两点施加电压 两点施加电流 高电容老式设备检测 与 LTC4295A-1 和 LTC4258 的引脚与 SW 兼容 1MHz I2C 兼容型串行控制接口 中跨延时定时器 支持专有的功率高达 25W 采用 38 引脚 5mm x 7mm QFN 和 36 引脚 SSOP 封装 产品详情 LTC®4266 是一款四通道供电设备 (PSE) 控制器,专为在符合 IEEE 802.3 Type 1 和 Type 2 标准 (高功率) 的以太网供电 (PoE) 系统中使用而设计。外部功率 MOSFET 增强了系统可靠性并最大限度地减小了通道电阻,从而削减了功耗并免除增设散热器的需要,即使在 Type 2 功率级条件下也不例外。外部功率元件还允许在非常高的功率级上使用,同时在其他方面依然保持与 IEEE 标准的兼容性。额定电压为 80V 的端口引脚提供了针对外部故障的坚固型保护。LTC4266 所拥有的高级...
发表于 02-22 14:34 98次 阅读
LTC4266 四通道 IEEE 802.3at 以太网供电控制器

ADSP-SC587 双核SHARC+和ARM Cortex-A5 SOC、双通道DDR、2x以太网、2xUSB、SDIO、529-cspBGA

和特点 双核SHARC+基础架构: 每个内核450 MHz (2.7GFLOPS) 支持奇偶校验的5Mb/640KB L1存储器/内核 可选缓存/SRAM模式 支持32、40和64位浮点 ARM内核基础架构: 450 MHz ARM Cortex-A5(具有Neon/FPU) 32kByte/32kByte L1指令/数据缓存 256kByte L2缓存 共享的系统存储器 256KB L2 SRAM,带ECC保护功能 最多两个高速存储控制器 DDR3-900、DDR2-800和LPDDR(16位) 高级硬件加速器 FFT/iFFT(18 GFLOPS,每个1K-pt FFT 5usec) FIR/IIR和SINC滤波器、ASRC 带OTP的安全加密引擎 封装 19mm x 19mm BGA(0.8mm间距) 商用、工业和汽车 主要连接和接口: 2个以太网MAC 一个千兆(RGMII)和一个10/100 (RMII) 支持IEEE-1588和AVB(QoS和时钟恢复) 2个USB2.0 HS OTG/设备控制器(MAC/PHY) 2个CAN2.0 SD/SDIO/MMC/eMMC(支持SDXC) 最多8个全SPORT接口(提供TDM和I2S模式) S/PDIF Tx/Rx、8个ASRC对、PCG 2个双通道SPI和1个四通道SPI(提供直接执行功能) 3个I...
发表于 02-22 12:18 182次 阅读
ADSP-SC587 双核SHARC+和ARM Cortex-A5 SOC、双通道DDR、2x以太网、2xUSB、SDIO、529-cspBGA

AD9574 以太网/千兆以太网时钟发生器

和特点 冗余输入参考时钟功能 参考监控功能 全集成式VCO/PLL内核 抖动(rms)0.234 ps rms抖动(10 kHz至10 MHz,156.25 MHz时)0.243 ps rms抖动(12 kHz至20 MHz,156.25 MHz时) 输入频率: 19.44 MHz或25 MHz 预设频率转换 采用19.44 MHz输入参考19.44 MHz、38.88 MHz、77.76 MHz、155.52 MHz 采用25 MHz输入参考25 MHz、33.33 MHz、50 MHz、66.67 MHz、80 MHz、100 MHz、125 MHz、133.3 MHz、156.25 MHz、160 MHz、312.5 MHz 欲了解更多特性,请参考数据手册 产品详情 AD9574具有多路输出时钟发生器功能,内置专用锁相环(PLL)内核,针对以太网和千兆以太网线路卡应用进行了优化。 整数N PLL设计基于ADI公司成熟的高性能、低抖动频率合成器产品系列,确保实现最高的网络性能。 AD9574还适合要求低相位噪声和抖动性能的其他应用。 配置AD9574以用于特定应用时,只需将外部上拉或下拉电阻连接到适当的引脚编程读取器引脚(PPRx)即可。 通过这些引脚可以控制内部分频器,以建立所需的频率转换、时钟输出功能和输入参考功能。 将外部19.44 MHz或25 MHz振荡器连接到参考输入REF0_P...
发表于 02-15 18:39 121次 阅读
AD9574 以太网/千兆以太网时钟发生器

AD9572 光纤通道/以太网时钟发生器IC,PLL内核,分频器,7路时钟输出

和特点 完全集成的双VCO/PLL内核均方根抖动:167 fs(0.637 MHz至10 MHz,106.25 MHz)均方根抖动:178 fs(1.875 MHz至20 MHz,156.25 MHz) 均方根抖动:418 fs(12 kHz至20 MHz,125 MHz输入晶振或25 MHz时钟频率)针对106.25 MHz、156.25 MHz、33.33 MHz、100 MHz、125 MHz提供预设分频比可选择LVPECL或LVDS输出格式集成环路滤波器参考时钟输出副本通过绑定引脚配置速率节省空间的6 mm × 6 mm、40引脚LFCSP封装功耗:0.71 W(LVDS工作方式)功耗:1.07 W(LVPECL工作方式)3.3 V 工作电压 产品详情 AD9572是一款多输出时钟发生器,具有两个片内PLL内核,针对包括以太网接口的光纤通道线路卡应用进行了优化。整数N分频PLL设计基于ADI公司成熟的高性能、低抖动频率合成器系列,可实现网络的最高性能。这款器件也适合相位噪声和抖动要求严格的其它应用。PLL部分由低噪声鉴频鉴相器(PFD)、精密电荷泵(CP)、低相位噪声压控振荡器(VCO)、预编程的反馈分频器和输出分频器组成。通过将一个外部晶振或参考时钟连接到REFCLK引脚,可以将最高156.25 MHz的频率锁定至输入参考。每...
发表于 02-15 18:39 191次 阅读
AD9572 光纤通道/以太网时钟发生器IC,PLL内核,分频器,7路时钟输出

ADN2905 具有614.4 Mbps至10.3125 Gbps放大器/均衡器的CPRI和10G以太网数据恢复IC

和特点 串行CPRI数据速率 614.4 Mbps、1.2288 Gbps、2.4576 Gbps、3.072 Gbps、4.9152 Gbps、6.144 Gbps和9.8304 Gbps 以太网数据速率:1.25 Gbps和10.3125 Gbps 无需参考时钟 抖动性能优于SFF-8431抖动规格 可选均衡器或0 dB EQ输入模式 量化器灵敏度:200 mV p-p(典型值,均衡器模式) 采样相位调整(5.65 Gbps或更高) 输出极性反转 通过I2C访问可选特性 失锁(LOL)指示器 PRBS发生器和检测器 欲了解更多特性,请参考数据手册 产品详情 ADN2905可提供下列速率的量化和多速率数据恢复接收器功能:614.4 Mbps、1.2288 Gbps、1.25 Gbps、2.4576 Gbps、3.072 Gbps、4.9152 Gbps、6.144 Gbps、9.8304 Gbps和10.3125 Gbps,适合通用公共无线电接口(CPRI)和千兆以太网应用。 ADN2905可自动锁定至所有指定的CPRI和以太网数据速率,而无需外部参考时钟或编程。 ADN2905抖动性能超过SFF-8431规定的抖动要求。 ADN2905提供手动采样相位调整。 此外,用户还可选择均衡器或0 dB EQ作为输入。 均衡器为自适应或可手动设置。 ADN2905还支持伪随机二进制序列(PRBS)生成、位错误检测和输入数据速率...
发表于 02-15 18:39 354次 阅读
ADN2905 具有614.4 Mbps至10.3125 Gbps放大器/均衡器的CPRI和10G以太网数据恢复IC