侵权投诉

选择IC需考虑控制器的架构和内部元件 以期高能效指标

电源研发精英圈 2020-10-14 11:51 次阅读

能量转换系统必定存在能耗,虽然实际应用中无法获得100%的转换效率,但是,一个高质量的电源效率可以达到非常高的水平,效率接近95%。绝大多数电源IC 的工作效率可以在特定的工作条件下测得,数据资料中给出了这些参数。一般厂商会给出实际测量的结果,但我们只能对我们自己的数据担保。图1 给出了一个SMPS 降压转换器电路实例,转换效率可以达到97%,即使在轻载时也能保持较高效率。采用什么秘诀才能达到如此高的效率?我们最好从了解SMPS 损耗的公共问题开始,开关电源的损耗大部分来自开关器件(MOSFET二极管),另外小部分损耗来自电感电容。但是,如果使用非常廉价的电感和电容(具有较高电阻),将会导致损耗明显增大。选择IC 时,需要考虑控制器的架构和内部元件,以期获得高效指标。例如,图1 采用了多种方法来降低损耗,其中包括:同步整流,芯片内部集成低导通电阻的MOSFET,低静态电流和跳脉冲控制模式。我们将在本文展开讨论这些措施带来的好处。

图1. 降压转换器集成了低导通电阻的MOSFET,采用同步整流,效率曲线如图所示。

降压型SMPS

损耗是任何SMPS 架构都面临的问题,我们在此以图2 所示降压型(或buck)转换器为例进行讨论,图中标明各点的开关波形,用于后续计算。

降压转换器的主要功能是把一个较高的直流输入电压转换成较低的直流输出电压。为了达到这个要求,MOSFET 以固定频率(fS),在脉宽调制信号(PWM)的控制下进行开、关操作。当MOSFET 导通时,输入电压给电感和电容(L 和COUT)充电,通过它们把能量传递给负载。在此期间,电感电流线性上升,电流回路如图2 中的回路1 所示。

当MOSFET 断开时,输入电压断开与电感的连接,电感和输出电容为负载供电。电感电流线性下降,电流流过二极管,电流回路如图中的环路2 所示。MOSFET 的导通时间定义为PWM 信号的占空比(D)。D 把每个开关周期分成[D × tS]和[(1 - D) × tS]两部分,它们分别对应于MOSFET 的导通时间(环路1)和二极管的导通时间(环路2)。所有SMPS 拓扑(降压、反相等)都采用这种方式划分开关周期,实现电压转换。

对于降压转换电路,较大的占空比将向负载传输较多的能量,平均输出电压增加。相反,占空比较低时,平均输出电压也会降低。根据这个关系,可以得到以下理想情况下(不考虑二极管或MOSFET 的压降)降压型SMPS 的转换公式:

VOUT = D × VIN

IIN = D × IOUT

需要注意的是,任何SMPS 在一个开关周期内处于某个状态的时间越长,那么它在这个状态所造成的损耗也越大。对于降压型转换器,D 越低(相应的VOUT 越低),回路2 产生的损耗也大。

1、开关器件的损耗 MOSFET 传导损耗

图2 (以及其它绝大多数DC-DC 转换器拓扑)中的MOSFET 和二极管是造成功耗的主要因素。相关损耗主要包括两部分:传导损耗和开关损耗。

MOSFET 和二极管是开关元件,导通时电流流过回路。器件导通时,传导损耗分别由MOSFET 的导通电阻(RDS(ON))和二极管的正向导通电压决定。

MOSFET 的传导损耗(PCOND(MOSFET))近似等于导通电阻RDS(ON)、占空比(D)和导通时MOSFET 的平均电流(IMOSFET(AVG))的乘积。

PCOND(MOSFET) (使用平均电流) = IMOSFET(AVG)² × RDS(ON) × D

上式给出了SMPS 中MOSFET 传导损耗的近似值,但它只作为电路损耗的估算值,因为电流线性上升时所产生的功耗大于由平均电流计算得到的功耗。对于“峰值”电流,更准确的计算方法是对电流峰值和谷值(图3 中的IV 和IP)之间的电流波形的平方进行积分得到估算值。

图3. 典型的降压型转换器的MOSFET 电流波形,用于估算MOSFET 的传导损耗。

下式给出了更准确的估算损耗的方法,利用IP 和IV 之间电流波形I²的积分替代简单的I²项。

PCOND(MOSFET) = [(IP3 - IV3)/3] × RDS(ON) × D

= [(IP3 - IV3)/3] × RDS(ON) × VOUT/VIN

式中,IP 和IV 分别对应于电流波形的峰值和谷值,如图3 所示。MOSFET 电流从IV 线性上升到IP,例如:如果IV 为0.25A,IP 为1.75A,RDS(ON)为0.1Ω,VOUT 为VIN/2 (D = 0.5),基于平均电流(1A)的计算结果为:

PCOND(MOSFET) (使用平均电流) = 12 × 0.1 × 0.5 = 0.050W

利用波形积分进行更准确的计算:

PCOND(MOSFET) (使用电流波形积分进行计算) = [(1.753 - 0.253)/3] × 0.1 × 0.5 = 0.089W

或近似为78%,高于按照平均电流计算得到的结果。对于峰均比较小的电流波形,两种计算结果的差别很小,利用平均电流计算即可满足要求。

2、二极管传导损耗

MOSFET 的传导损耗与RDS(ON)成正比,二极管的传导损耗则在很大程度上取决于正向导通电压(VF)。二极管通常比MOSFET 损耗更大,二极管损耗与正向电流、VF 和导通时间成正比。由于MOSFET 断开时二极管导通,二极管的传导损耗(PCOND(DIODE))近似为:

PCOND(DIODE) = IDIODE(ON) × VF × (1 - D)

式中,IDIODE(ON)为二极管导通期间的平均电流。图2 所示,二极管导通期间的平均电流为IOUT,因此,对于降压型转换器,PCOND(DIODE)可以按照下式估算:

PCOND(DIODE) = IOUT × VF × (1 - VOUT/VIN)

与MOSFET 功耗计算不同,采用平均电流即可得到比较准确的功耗计算结果,因为二极管损耗与I 成正比,而不是I2。

显然,MOSFET 或二极管的导通时间越长,传导损耗也越大。对于降压型转换器,输出电压越低,二极管产生的功耗也越大,因为它处于导通状态的时间越长。

3、开关动态损耗

由于开关损耗是由开关的非理想状态引起的,很难估算MOSFET 和二极管的开关损耗,器件从完全导通到完全关闭或从完全关闭到完全导通需要一定时间,在这个过程中会产生功率损耗。图4 所示MOSFET 的漏源电压(VDS)和漏源电流(IDS)的关系图可以很好地解释MOSFET 在过渡过程中的开关损耗,从上半部分波形可以看出,tSW(ON)和tSW(OFF)期间电压和电流发生瞬变,MOSFET 的电容进行充电、放电。

图4 所示,VDS 降到最终导通状态(= ID × RDS(ON))之前,满负荷电流(ID)流过MOSFET。相反,关断时,VDS 在MOSFET 电流下降到零值之前逐渐上升到关断状态的最终值。开关过程中,电压和电流的交叠部分即为造成开关损耗的来源,从图4 可以清楚地看到这一点。

图4. 开关损耗发生在MOSFET 通、断期间的过渡过程

开关损耗随着SMPS 频率的升高而增大,这一点很容易理解,随着开关频率提高(周期缩短),开关过渡时间所占比例增大,从而增大开关损耗。开关转换过程中,开关时间是占空比的二十分之一对于效率的影响要远远小于开关时间为占空比的十分之一的情况。由于开关损耗和频率有很大的关系,工作在高频时,开关损耗将成为主要的损耗因素。MOSFET 的开关损耗(PSW(MOSFET))可以按照图3 所示三角波进行估算,公式如下:

PSW(MOSFET) = 0.5 × VD × ID × (tSW(ON) + tSW(OFF)) × fS

其中,VD 为MOSFET 关断期间的漏源电压,ID 是MOSFET 导通期间的沟道电流,tSW(ON)和tSW(OFF)是导通和关断时间。对于降压电路转换,VIN 是MOSFET 关断时的电压,导通时的电流为IOUT。

为了验证MOSFET 的开关损耗和传导损耗,图5 给出了降压转换器中集成高端MOSFET 的典型波形:VDS和IDS。电路参数为:VIN = 10V、VOUT = 3.3V、IOUT = 500mA、RDS(ON) = 0.1Ω、fS = 1MHz、开关瞬变时间(tON + tOFF)总计为38ns。

在图5 可以看出,开关变化不是瞬间完成的,电流和电压波形交叠部分导致功率损耗。MOSFET“导通”时(图2),流过电感的电流IDS 线性上升,与导通边沿相比,断开时的开关损耗更大。

利用上述近似计算法,MOSFET 的平均损耗可以由下式计算:

PT(MOSFET) = PCOND(MOSFET) + PSW(MOSFET)

= [(I13 - I03)/3] × RDS(ON) × VOUT/VIN + 0.5 × VIN × IOUT × (tSW(ON) + tSW(OFF)) × fS

= [(13 - 03)/3] × 0.1 × 3.3/10 + 0.5 × 10 × 0.5 × (38 × 10-9) × 1 × 106

= 0.011 + 0.095 = 106mW

这一结果与图5 下方曲线测量得到的117.4mW 接近,注意:这种情况下,fS 足够高,PSW(MOSFET)是功耗的主要因素。

图5. 降压转换器高端MOSFET 的典型开关周期,输入10V、输出3.3V (输出电流500mA)。开关频率为1MHz,开关转换时间是38ns。

与MOSFET 相同,二极管也存在开关损耗。这个损耗很大程度上取决于二极管的反向恢复时间(tRR),二极管开关损耗发生在二极管从正向导通到反向截止的转换过程。

当反向电压加在二级管两端时,正向导通电流在二极管上产生的累积电荷需要释放,产生反向电流尖峰(IRR(PEAK)),极性与正向导通电流相反,从而造成V × I 功率损耗,因为反向恢复期内,反向电压和反向电流同时存在于二极管。图6 给出了二极管在反向恢复期间的PN 结示意图。

图6. 二极管结反偏时,需要释放正向导通期间的累积电荷,产生峰值电流(IRR(PEAK))。

了解了二极管的反向恢复特性,可以由下式估算二极管的开关损耗(PSW(DIODE)):

PSW(DIODE) = 0.5 × VREVERSE × IRR(PEAK) × tRR2 × fS

其中,VREVERSE 是二极管的反向偏置电压,IRR(PEAK)是反向恢复电流的峰值,tRR2 是从反向电流峰值IRR 到恢复电流为正的时间。对于降压电路,当MOSFET 导通的时候,VIN 为MOSFET 导通时二极管的反向偏置电压。

为了验证二极管损耗计算公式,图7 显示了典型的降压转换器中PN 结的开关波形,VIN = 10V、VOUT =3.3V,测得IRR(PEAK) = 250mA、IOUT = 500mA、fS = 1MHz、 tRR2 = 28ns、VF = 0.9V。利用这些数值可以得到:

该结果接近于图7 所示测量结果358.7mW。考虑到较大的VF和较长的二极管导通周期,tRR 时间非常短,开关损耗(PSW(DIODE))在二极管损耗中占主导地位。

图7. 降压型转换器中PN 结开关二极管的开关波形,从10V 输入降至3.3V 输出,输出电流为500mA。其它参数包括:1MHz 的fS,tRR2 为28ns,VF = 0.9V。

提高效率

基于上述讨论,通过哪些途径可以降低电源的开关损耗呢?直接途径是:选择低导通电阻RDS(ON)、可快速切换的MOSFET;选择低导通压降VF、可快速恢复的二极管。

直接影响MOSFET 导通电阻的因素有几点,通常增加芯片尺寸和漏源极击穿电压(VBR(DSS)),由于增加了器件中的半导体材料,有助于降低导通电阻RDS(ON)。另一方面,较大的MOSFET 会增大开关损耗。因此,虽然大尺寸MOSFET 降低了RDS(ON),但也导致小器件可以避免的效率问题。当管芯温度升高时,MOSFET 导通电阻会相应增大。必须保持较低的结温,使导通电阻RDS(ON)不会过大。导通电阻RDS(ON)和栅源偏置电压成反比,因此,推荐使用足够大的栅极电压以降低RDS(ON)损耗,但此时也会增大栅极驱动损耗,需要平衡降低RDS(ON)的好处和增大栅极驱动的缺陷。
 
       MOSFET 的开关损耗与器件电容有关,较大的电容需要较长的充电时间,使开关切换变缓,消耗更多能量。米勒电容通常在MOSFET 数据资料中定义为反向传输电容(CRSS)或栅-漏电容(CGD),在开关过程中对切换时间起决定作用。米勒电容的充电电荷用QGD 表示,为了快速切换MOSFET,要求尽可能低的米勒电容。一般来说,MOSFET 的电容和芯片尺寸成反比,因此必须折中考虑开关损耗和传导损耗,同时也要谨慎选择电路的开关频率。

       对于二极管,必须降低导通压降,以降低由此产生的损耗。对于小尺寸、额定电压较低的硅二极管,导通压降一般在0.7V 到1.5V 之间。二极管的尺寸、工艺和耐压等级都会影响导通压降和反向恢复时间,大尺寸二极管通常具有较高的VF 和tRR,这会造成比较大的损耗。开关二极管一般以速度划分,分为“高速”、“甚高速”和“超高速”二极管,反向恢复时间随着速度的提高而降低。快恢复二极管的tRR 为几百纳秒,而超高速快恢复二极管的tRR 为几十纳秒。低功耗应用中,替代快恢复二极管的一种选择是肖特基二极管,这种二极管的恢复时间几乎可以忽略,反向恢复电压VF 也只有快恢复二极管的一半(0.4V 至1V),但肖特基二极管的额定电压和电流远远低于快恢复二极管,无法用于高压或大功率应用。

       另外,肖特基二极管与硅二极管相比具有较高的反向漏电流,但这些因素并不限制它在许多电源中的应用。然而,在一些低压应用中,即便是具有较低压降的肖特基二极管,所产生的传导损耗也无法接受。比如,在输出为1.5V 的电路中,即使使用0.5V 导通压降VF 的肖特基二极管,二极管导通时也会产生33%的输出电压损耗!为了解决这一问题,可以选择低导通电阻RDS(ON)的MOSFET实现同步控制架构。用MOSFET 取代二极管(对比图1 和图2 电路),它与电源的主MOSFET 同步工作,所以在交替切换的过程中,保证只有一个导通。导通的二极管由导通的MOSFET 所替代,二极管的高导通压降VF 被转换成MOSFET 的低导通压降(MOSFET RDS(ON) × I),有效降低了二极管的传导损耗。

       当然,同步整流与二极管相比也只是降低了MOSFET 的压降,另一方面,驱动同步整流MOSFET 的功耗也不容忽略。IC数据资料 以上讨论了影响开关电源效率的两个重要因素(MOSFET 和二极管)。回顾图 1 所示降压电路,从数据资料中可以获得影响控制器IC 工作效率的主要因素。

        首先,开关元件集成在IC 内部,可以节省空间、降低寄生损耗。其次,使用低导通电阻RDS(ON)的MOSFET,在小尺寸集成降压IC (如MAX1556)中,其NMOS 和PMOS 的导通电阻可以达到0.27Ω (典型值)和0.19Ω (典型值)。最后,使用的同步整流电路。对于500mA 负载,占空比为50%的开关电路,可以将低边开关(或二极管)的损耗从225mW (假设二极管压降为 1V)降至 34mW。合理选择SMPS IC 合理选择 SMPS IC的封装、控制架构,并进行合理设计,可以有效提高转换效率。

4、集成功率开关

功率开关集成到IC 内部时可以省去繁琐的MOSFET 或二极管选择,而且使电路更加紧凑,由于降低了线路损耗和寄生效应,可以在一定程度上提高效率。根据功率等级和电压限制,可以把MOSFET、二极管(或同步整流MOSFET)集成到芯片内部。将开关集成到芯片内部的另一个好处是栅极驱动电路的尺寸已经针对片内MOSFET 进行了优化,因而无需将时间浪费在未知的分立MOSFET 上。

静态电流

电池供电设备特别关注IC 规格中的静态电流(IQ),它是维持电路工作所需的电流。重载情况下(大于十倍或百倍的静态电流IQ),IQ 对效率的影响并不明显,因为负载电流远大于IQ,而随着负载电流的降低,效率有下降的趋势,因为IQ 对应的功率占总功率的比例提高。这一点对于大多数时间处于休眠模式或其它低功耗模式的应用尤其重要,许多消费类产品即使在“关闭”状态下,也需要保持键盘扫描或其它功能的供电,这时,无疑需要选择具有极低IQ的电源。

电源架构对效率的提高

SMPS 的控制架构是影响开关电源效率的关键因素之一。这一点我们已经在同步整流架构中讨论过,由于采用低导通电阻的MOSFET 取代了功耗较大的开关二极管,可有效改善效率指标。

另一种重要的控制架构是针对轻载工作或较宽的负载范围设计的,即跳脉冲模式,也称为脉冲频率调制(PFM)。与单纯的PWM 开关操作(在重载和轻载时均采用固定的开关频率)不同,跳脉冲模式下转换器工作在跳跃的开关周期,可以节省不必要的开关操作,进而提高效率。

跳脉冲模式下,在一段较长时间内电感放电,将能量从电感传递给负载,以维持输出电压。当然,随着负载吸收电流,输出电压也会跌落。当电压跌落到设置门限时,将开启一个新的开关周期,为电感充电并补充输出电压。

需要注意的是跳脉冲模式会产生与负载相关的输出噪声,这些噪声由于分布在不同频率(与固定频率的PWM 控制架构不同),很难滤除。

先进的SMPS IC 会合理利用两者的优势:重载时采用恒定PWM 频率;轻载时采用跳脉冲模式以提高效率,图1 所示IC 即提供了这样的工作模式。

当负载增加到一个较高的有效值时,跳脉冲波形将转换到固定PWM,在标称负载下噪声很容易滤除。在整个工作范围内,器件根据需要选择跳脉冲模式和PWM 模式,保持整体的最高效率(图8)。

图8 中的曲线D、E、F 所示效率曲线在固定PWM 模式下,轻载时效率较低,但在重载时能够提供很高的转换效率(高达98%)。如果设置在轻载下保持固定PWM 工作模式,IC 将不会按照负载情况更改工作模式。这种情况下能够使纹波保持在固定频率,但浪费了一定功率。重载时,维持PWM 开关操作所需的额外功率很小,远远低于输出功率。另一方面,跳脉冲“空闲”模式下的效率曲线(图8 中的A、B、C)能够在轻载时保持在较高水平,因为开关只在负载需要时开启。对7V 输入曲线,在1mA 负载的空闲模式下能够获得高于60%的效率。

图8. 降压转换器在PWM 和空闲(跳脉冲)模式下效率曲线,注意:轻载时,空闲模式下的效率高于PWM模式。

优化SMPS

开关电源因其高效率指标得到广泛应用,但其效率仍然受SMPS 电路的一些固有损耗的制约。设计开关电源时,需要仔细研究造成SMPS 损耗的来源,合理选择SMPS IC,从而充分利用器件的优势,为了在保持尽可能低的电路成本,甚至不增加电路成本的前提下获得高效的SMPS,工程师需要做出全面的选择。

5、无源元件损耗

我们已经了解MOSFET 和二极管会导致SMPS 损耗。采用高品质的开关器件能够大大提升效率,但它们并不是唯一能够优化电源效率的元件。

图1 详细介绍了一个典型的降压型转换器IC 的基本电路。集成了两个同步整流MOSFET,低RDS(ON) MOSFET,效率很高。这个电路中,开关元件集成在IC 内部,已经为具体应用预先选择了元器件。然而,为了进一步提高效率,设计人员还需关注无源元件—外部电感和电容,了解它们对功耗的影响。

6、电感功耗阻性损耗

电感功耗包括线圈损耗和磁芯损耗两个基本因素,线圈损耗归结于线圈的直流电阻(DCR),磁芯损耗归结于电感的磁特性。

DCR 定义为以下电阻公式:

式中,ρ 为线圈材料的电阻系数,l 为线圈长度,A 为线圈横截面积。

DCR 将随着线圈长度的增大而增大,随着线圈横截面积的增大而减小。可以利用该原则判断标准电感,确定所要求的不同电感值和尺寸。对一个固定的电感值,电感尺寸较小时,为了保持相同匝数必须减小线圈的横截面积,因此导致DCR 增大;对于给定的电感尺寸,小电感值通常对应于小的DCR,因为较少的线圈数减少了线圈长度,可以使用线径较粗的导线。

已知DCR 和平均电感电流(具体取决于SMPS 拓扑),电感的电阻损耗(PL(DCR))可以用下式估算:

PL(DCR) = LAVG2× DCR

这里,IL(AVG)是流过电感的平均直流电流。对于降压转换器,平均电感电流是直流输出电流。尽管DCR的大小直接影响电感电阻的功耗,该功耗与电感电流的平方成正比,因此,减小DCR 是必要的。

另外,还需要注意的是:利用电感的平均电流计算PL(DCR) (如上述公式)时,得到的结果略低于实际损耗,因为实际电感电流为三角波。本文前面介绍的MOSFET 传导损耗计算中,利用对电感电流的波形进行积分可以获得更准确的结果。更准确。当然也更复杂的计算公式如下:

PL(DCR) = (IP3 - IV3)/3 × DCR

式中IP 和IV 为电感电流波形的峰值和谷值。

7、磁芯损耗

磁芯损耗并不像传导损耗那样容易估算,很难估测。它由磁滞、涡流损耗组成,直接影响铁芯的交变磁通。SMPS 中,尽管平均直流电流流过电感,由于通过电感的开关电压的变化产生的纹波电流导致磁芯周期性的磁通变化。

磁滞损耗源于每个交流周期中磁芯偶极子的重新排列所消耗的功率,可以将其看作磁场极性变化时偶极子相互摩擦产生的“摩擦”损耗,正比于频率和磁通密度。

相反,涡流损耗则是磁芯中的时变磁通量引入的。由法拉第定律可知:交变磁通产生交变电压。因此,这个交变电压会产生局部电流,在磁芯电阻上产生I2R 损耗。

磁芯材料对磁芯损耗的影响很大。SMPS 电源中普遍使用的电感是铁粉磁芯,铁镍钼磁粉芯(MPP)的损耗最低,铁粉芯成本最低,但磁芯损耗较大。

磁芯损耗可以通过计算磁芯磁通密度(B)的最大变化量估算,然后查看电感或铁芯制造商提供的磁通密度和磁芯损耗(和频率)图表。峰值磁通密度可以通过几种方式计算,公式可以在电感数据资料中的磁芯损耗曲线中找到。

相应地,如果磁芯面积和线圈数已知,可利用下式估计峰值磁通:

这里,B 是峰值磁通密度(高斯),L 是线圈电感(亨),ΔI 是电感纹波电流峰峰值(安培),A 是磁芯横截面积(cm2),N 是线圈匝数。

随着互联网的普及,可以方便地从网上下载资料、搜索器件信息,一些制造商提供了交互式电感功耗的计算软件,帮助设计者估计功耗。使用这些工具能够快捷、准确地估计应用电路中的功率损耗。例如,Coilcraft 提供的在线电感磁芯损耗和铜耗计算公式,简单输入一些数据即可得到所选电感的磁芯损耗和铜耗。

8、电容损耗

与理想的电容模型相反,电容元件的实际物理特性导致了几种损耗。电容在SMPS 电路中主要起稳压、滤除输入/输出噪声的作用(图1),电容的这些损耗降低了开关电源的效率。这些损耗主要表现在三个方面:等效串联电阻损耗、漏电流损耗和电介质损耗。

电容的阻性损耗显而易见。既然电流在每个开关周期流入、流出电容,电容固有的电阻(RC)将造成一定功耗。漏电流损耗是由于电容绝缘材料的电阻(RL)导致较小电流流过电容而产生的功率损耗。电介质损耗比较复杂,由于电容两端施加了交流电压,电容电场发生变化,从而使电介质分子极化造成功率损耗。

图9. 电容损耗模型一般简化为一个等效串联电阻(ESR)

所有三种损耗都体现在电容的典型损耗模型中(图9 左边部分),用电阻代表每项损耗。与电容储能相关的每项损耗的功率用功耗系数(DF)表示,或损耗角正切(δ)。每项损耗的DF 可以通过由电容阻抗的实部与虚部比得到,可以将每项损耗分别插入模型中。

为简化损耗模型,图9 中的接触电阻损耗、漏电流损耗和电介质损耗集中等为一个等效串联电阻(ESR)。ESR 定义为电容阻抗中消耗有功功率的部分。

推算电容阻抗模型、计算ESR (结果的实部)时,ESR 是频率的函数。这种相关性可以在下面简化的ESR等式中得到证明:

式中,DFR、DFL 和DFD 是接触电阻、漏电流和电介质损耗的功耗系数。

利用这个等式,我们可以观察到随着信号频率的增加,漏电流损耗和电介质损耗都有所减小,直到接触电阻损耗从一个较高频点开始占主导地位。在该频点(式中没有包括该参数)以上,ESR 因为高频交流电流的趋肤效应趋于增大。

许多电容制造商提供ESR 曲线图表示ESR 与频率的关系。例如,TDK 为其大多数电容产品提供了ESR 曲线,参考这些与开关频率对应曲线图,得到ESR 值。

然而,如果没有ESR 曲线图,可以通过电容数据资料中的DF 规格粗略估算ESR。DF 是电容的整体DF (包括所有损耗),也可以按照下式估算ESR:

无论采用哪种方法来得到ESR 值,直觉告诉我们,高ESR 会降低开关电源效率,既然输入和输出电容在每个开关周期通过ESR 充电、放电。这导致I2× RESR 功率损耗。这个损耗(PCAP(ESR))可以按照下式计算:

PCAP(ESR) = ICAP(RMS)2 × RESR

式中,ICAP(RMS)是流经电容的交流电流有效值RMS。对降压电路的输出电容,可以采用电感纹波电流的有效值RMS。输入滤波电容的RMS 电流的计算比较复杂,可以按照下式得到一个合理的估算值:

ICIN(RMS) = IOUT/VIN × [VOUT (VIN - VOUT)]1/2

显然,为减小电容功率损耗,应选择低ESR 电容,有助于SMPS 电源降低纹波电流。ESR 是产生输出电压纹波的主要原因,因此选择低ESR 的电容不仅仅单纯提高效率,还能得到其它好处。

一般来说,不同类型电介质的电容具有不同的ESR 等级。对于特定的容量和额定电压,铝电解电容钽电容就比陶瓷电容具有更高的ESR 值。聚酯和聚丙烯电容的ESR 值介于它们之间,但这些电容尺寸较大,SMPS 中很少使用。

对于给定类型的电容,较大容量、较低的fS 能够提供较低的ESR。大尺寸电容通常也会降低ESR,但电解电容会带来较大的等效串联电感。陶瓷电容被视为比较好的折中选择,此外,电容值一定的条件下,较低的电容额定电压也有助于减小ESR。

责任编辑:xj

原文标题:开关电源八大处损耗,电源工程师都哭了!

文章出处:【微信公众号:电源研发精英圈】欢迎添加关注!文章转载请注明出处。

原文标题:开关电源八大处损耗,电源工程师都哭了!

文章出处:【微信号:dianyuankaifa,微信公众号:电源研发精英圈】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
分享:

评论

相关推荐

开关电源的性能指标有哪些

额定的输入电压指的是开关电源在正常的工作情况下输入的电压,通常分为固定电压,就是我们通常的市电220....
的头像 陈翠 发表于 12-05 17:38 46次 阅读
开关电源的性能指标有哪些

开关电源起振是什么看了就知道

接触开关电源的朋友都知道,含有电源管理芯片的开关电源有输入,没输出时常说是不是电路没起振,到底这句话....
的头像 陈翠 发表于 12-05 17:24 74次 阅读
开关电源起振是什么看了就知道

开关电源怎么保持输出电压的稳定

开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源....
的头像 陈翠 发表于 12-05 16:58 63次 阅读
开关电源怎么保持输出电压的稳定

采用优质U6107D电源IC可以高效保障按摩仪的使用效果

长期伏案工作使用电脑、手机,下班后也手不离机,眼部容易出现干涩、疲劳、视线模糊。权威医学调查证明,用....
的头像 开关电源芯片 发表于 12-05 10:48 57次 阅读
采用优质U6107D电源IC可以高效保障按摩仪的使用效果

弱电综合管理系统的功能设计及应用分析

弱电系统对建筑物来说是一个整体,每个弱电系统都有电缆管线,遍布着弱电系统的电缆。管路设计的目的是使这....
的头像 牵手一起梦 发表于 12-05 07:20 199次 阅读
弱电综合管理系统的功能设计及应用分析

中国芯应用创新设计大赛完美收官

2020年11月27日,中国芯应用创新高峰论坛暨IAIC大赛颁奖典礼在南方软件园松山湖园区隆重举行,....
的头像 兆易创新GigaDevice 发表于 12-04 16:36 187次 阅读
中国芯应用创新设计大赛完美收官

西藏地区将成为水电新能源大本营

从习总书记今年9月22日明确提出2030年实现碳达峰、2060年实现碳中和目标开始,我国已经为如何减....
发表于 12-04 16:26 149次 阅读
西藏地区将成为水电新能源大本营

彩晶第四季中尺寸面板出货比重或攀升到56%

据台媒报道,今年下半年不仅面板供应吃紧,上游零部件与材料供应也面临缺货。针对这一现象,面板厂瀚宇彩晶....
的头像 我快闭嘴 发表于 12-04 16:13 306次 阅读
彩晶第四季中尺寸面板出货比重或攀升到56%

SEMI:全球半导体设备Q3销售年增三成

半导体行业协会(SIA)今天发布了半导体的全球销售金额,据他们报道,2020年十月,全球半导体销量达....
的头像 我快闭嘴 发表于 12-04 15:22 230次 阅读
SEMI:全球半导体设备Q3销售年增三成

三安集成打造碳化硅MOSFET器件量产平台,提升电源系统功率密度

中国化合物半导体全产业链制造平台——三安集成于日前宣布,已经完成碳化硅MOSFET器件量产平台的打造....
的头像 牵手一起梦 发表于 12-04 14:18 225次 阅读
三安集成打造碳化硅MOSFET器件量产平台,提升电源系统功率密度

电子2021年策略报告要点

1、本土IC设计亟待成长,精选赛道享双重红利 IC设计作为半导体行业中极其重要的一环,是国产替代的重....
的头像 Les 发表于 12-04 13:53 168次 阅读
电子2021年策略报告要点

IC涨价大盘点,缺货与涨价并存

随着5G需求快速升温,加上远距办公/教育带来的笔电、平板电脑需求增长,从而带动电源管理IC、MOSF....
的头像 半导体投资联盟 发表于 12-04 11:48 145次 阅读
IC涨价大盘点,缺货与涨价并存

性能更优,可靠性更高的国产IGBT产品

近些年是国内功率半导体器件迅猛发展的良好时机,国产半导体企业在MOSFET ,IGBT及SiC等产品....
的头像 电子发烧友网 发表于 12-04 10:41 134次 阅读
性能更优,可靠性更高的国产IGBT产品

视频联网报警系统的功能特性及应用

使用SY9511与普通GPRS联网报警主机配合使用,可使传统联网报警实现视频复核,为老设备升级视频复....
发表于 12-04 10:34 82次 阅读
视频联网报警系统的功能特性及应用

恩智浦涨价函流出,产品全线暴涨

近日,汽车芯片厂商龙头NXP(恩智浦)涨价函再流出:11月26日,恩智浦向客户表示,受新冠疫情影响,....
的头像 我快闭嘴 发表于 12-04 10:20 262次 阅读
恩智浦涨价函流出,产品全线暴涨

汤谷智能:立足IC设计创新源头,助力国产IC发展

EDA/IP的重要性不言而喻。目前,许多集成电路设计服务公司不仅提供EDA软件,同时也提供IP,这种....
的头像 半导体投资联盟 发表于 12-04 09:31 68次 阅读
汤谷智能:立足IC设计创新源头,助力国产IC发展

英业达上电时序的详细资料说明

本文档的主要内容详细介绍的是英业达上电时序的详细资料说明。
发表于 12-04 08:00 12次 阅读
英业达上电时序的详细资料说明

开关电源设计与优化的PDF电子教程免费下载

本书是作者(国家半导体公司总工程师)凭多年工作经验和学术造诣全面概括开关电源设计与优化技术的结晶。书....
发表于 12-04 08:00 57次 阅读
开关电源设计与优化的PDF电子教程免费下载

简易实用小型开关电源原理图合集免费下载

本文档的主要内容详细介绍的是简易实用小型开关电源原理图合集免费下载,
发表于 12-04 08:00 73次 阅读
简易实用小型开关电源原理图合集免费下载

PWM发生器的主要功能

什么是PWM发生器及其主要功能?
发表于 12-04 07:22 0次 阅读
PWM发生器的主要功能

使用Arduino实现PWM调光实验的例程免费下载

本文档的主要内容详细介绍的是使用Arduino实现PWM调光实验的例程免费下载。
发表于 12-03 16:30 26次 阅读
使用Arduino实现PWM调光实验的例程免费下载

电源管理芯片缺货涨价加剧?

能源是发展人类文明的重要起源,而这把火炬,显现在电子元件领域,便是电源元件。电源不仅是启动任何电子元....
的头像 我快闭嘴 发表于 12-03 15:53 424次 阅读
电源管理芯片缺货涨价加剧?

涨声阵阵供需错配 电源管理IC和MCU不仅涨价还全线延期

对于MCU,业界分析,先前国际MCU领导厂商意法半导体发生罢工事件,影响市场供给,再加上台积电、联电....
发表于 12-03 15:49 161次 阅读
涨声阵阵供需错配 电源管理IC和MCU不仅涨价还全线延期

电缆线路工程消防应急照明和疏散指示系统的应用

摘要:消防应急疏散照明技术是一项受到各国重视、有多年发展历史和涉及建筑火灾时保证人员生命安全的重要救....
发表于 12-03 15:47 106次 阅读
电缆线路工程消防应急照明和疏散指示系统的应用

国产无钴电池终量产,电芯循环寿命超4000次

动力电池的高成本一直制约着新能源汽车的终端售价,而目前市场上以能量密度更高,可以带来更高续航表现的三....
发表于 12-03 15:19 115次 阅读
国产无钴电池终量产,电芯循环寿命超4000次

快上车!听说发烧友双12不仅课程低价秒杀而且还送礼!?

    今年只剩最后1个月,为了感谢各位小伙伴一直以来对发烧友平台的信任与支持,本次双十二活动我们决定用最简单、最直...
发表于 12-03 15:11 101次 阅读
快上车!听说发烧友双12不仅课程低价秒杀而且还送礼!?

AI将帮助延长传感器和物联网电源的寿命

研究人员旨在通过使用人工智能和能量收集技术来延长传感器和物联网设备的寿命。
发表于 12-03 14:18 151次 阅读
AI将帮助延长传感器和物联网电源的寿命

国内首家打通碳化硅全产业链,三安集成完成MOSFET量产平台打造

随着中国“十四五”规划浮出水面,第三代半导体项目投资升温加剧。据不完全统计,2020年有8家企业计划....
发表于 12-03 14:07 146次 阅读
国内首家打通碳化硅全产业链,三安集成完成MOSFET量产平台打造

80V,480KHz,1.5A 异步降压型电源ZCC2480数据手册

产品特点 ·1.5A输出峰值电流 · 热关断保护 ·4.5V至80V宽工作电压范围 · > 90%的效率 ·1Ω的内部功率MOSFE...
发表于 12-03 13:45 97次 阅读
80V,480KHz,1.5A 异步降压型电源ZCC2480数据手册

宽输入范围DC/DC控制器LT3757的性能特点及应用

Linear推出的宽输入范围 DC/DC 控制器 LT3757,该器件适用于升压型、反激式、SEPI....
发表于 12-03 12:04 98次 阅读
宽输入范围DC/DC控制器LT3757的性能特点及应用

直流高压发生器的保护功能如何保障仪器安全

直流高压发生器是提供高压直流源的仪器,我们首先要强调的安全。在工作电源进入试验器前加装两个明显断开点。当更换试品和接线...
发表于 12-03 11:37 101次 阅读
直流高压发生器的保护功能如何保障仪器安全

高开关频率DC-DC转换器MAX5098A的性能特性及应用

DC-DC转换器的工作电压范围较宽:4.5V至19V。MAX5098A工作在180°错相模式,开关频....
发表于 12-03 11:14 52次 阅读
高开关频率DC-DC转换器MAX5098A的性能特性及应用

汤谷智能:立足IC设计创新源头,助力国产IC发展

2021中国IC风云榜“年度新锐公司”征集现已启动!入围标准要求为营收过亿元的未上市、未进入IPO辅....
发表于 12-03 11:10 152次 阅读
汤谷智能:立足IC设计创新源头,助力国产IC发展

大功率高频硬开关PWM变换器的工作原理及应用分析

所谓硬开关PWM(脉冲宽度调制),是指在功率变换过程中电子开关在开通和关断的瞬间处于大电流或高电压的....
的头像 电子设计 发表于 12-03 10:13 192次 阅读
大功率高频硬开关PWM变换器的工作原理及应用分析

消息称东芝计划将电源控制芯片产能扩增50%

据报道,为实现低碳社会,用于电动车(EV)、家电等用途的电源控制芯片需求受惠而增长,市场传出东芝计划....
的头像 我快闭嘴 发表于 12-03 10:02 274次 阅读
消息称东芝计划将电源控制芯片产能扩增50%

吉时利2651A大功率系统数字源的功能特性及应用分析

大功率2651A 型数字源表进一步丰富了2600A 系列产品。该源表专门针对大功率电子器 件的特性分....
发表于 12-03 09:36 49次 阅读
吉时利2651A大功率系统数字源的功能特性及应用分析

SKM 50GB063D超快NPT IGBT模块的数据手册免费下载

本文档的主要内容详细介绍的是SKM 50GB063D超快NPT IGBT模块的数据手册免费下载。
发表于 12-03 08:00 22次 阅读
SKM 50GB063D超快NPT IGBT模块的数据手册免费下载

LY3400高效率PWM同步升压DCDC转换器的数据手册免费下载

LY3400 是一款高效率的 PWM 同 步升 压 DC/DC 转换器 , 提供高效的电源系统解决方....
发表于 12-03 08:00 26次 阅读
LY3400高效率PWM同步升压DCDC转换器的数据手册免费下载

如何寻找电源领域的最新技术?

寻找电源领域的最新技术
发表于 12-03 06:25 0次 阅读
如何寻找电源领域的最新技术?

用Verilog写的高分辨率PWM,输出一直是低电平,有人能帮忙改一改吗

用Verilog写的高分辨率PWM,输出一直是低电平,有人能帮忙改一改吗,结构如下图,代码在附件里 ...
发表于 12-02 19:46 179次 阅读
用Verilog写的高分辨率PWM,输出一直是低电平,有人能帮忙改一改吗

美国或制裁艾睿亚太,或将造成“连锁效应”

11月23日,路透社就有报道称美国商务部工业和安全局(BIS)正打算在联邦公布上发布文件,包括宣布与....
发表于 12-02 17:36 142次 阅读
美国或制裁艾睿亚太,或将造成“连锁效应”

瑞萨电子宣布将在明年1月1日起涨价

日本半导体制造商瑞萨电子(Renesas Electronics)于11月30日向客户发送了一封产品....
的头像 如意 发表于 12-02 17:03 248次 阅读
瑞萨电子宣布将在明年1月1日起涨价

欧盟将在下月实施更严格的电池生产标准

据国外媒体报道,欧洲计划对电池生产实施更严格的环保要求,该地区正在启动大规模经济结构调整,以促进电动....
发表于 12-02 16:57 261次 阅读
欧盟将在下月实施更严格的电池生产标准

我如果想要测一个负载的电压反馈到MCU应该怎么测

负载两端的最大电压12V最大电流10A,我要怎么设计呢? ...
发表于 12-02 16:09 176次 阅读
我如果想要测一个负载的电压反馈到MCU应该怎么测

关于电路的有关问题

如果我以及有了一个24V并且电流足够大的直流电源,我为了给后面的12V 10A的制冷片供电,这么设计电路可以吗?还有就是我需要...
发表于 12-02 14:58 171次 阅读
关于电路的有关问题

中科芯亿达:国内驱动芯片领域的领跑者

2021中国IC风云榜“年度新锐公司”征集现已启动!入围标准要求为营收过亿元的未上市、未进入IPO辅....
的头像 我快闭嘴 发表于 12-02 10:19 376次 阅读
中科芯亿达:国内驱动芯片领域的领跑者

开关电源的原理与设计的电子教材免费下载

本书系统论述DC-DC高频开关电源的工作原理与工程设计方法。主要包括:PWM变换器和软开关PWM变换....
发表于 12-02 08:00 152次 阅读
开关电源的原理与设计的电子教材免费下载

零起步轻松学变频技术的PDF电子书免费下载

本书是一本介绍变频技术的入门读物。本书主要介绍变频常用电力电子器件,交-直-交变频技术,脉宽调制技术....
发表于 12-02 08:00 49次 阅读
零起步轻松学变频技术的PDF电子书免费下载

电源有待机电压,无输出是为什么?

我在零基础学修ATX电源,求 影驰HOF-1200电路图。电源故障现象是有待机电压,无输出。那位大伽有电路图发一下。先谢谢!求...
发表于 12-01 22:00 170次 阅读
电源有待机电压,无输出是为什么?

TRACO POWER 简介  

TRACO POWER  三十多年来,TRACO POWER 一直是工业或医疗....
的头像 黄敏怡 发表于 12-01 20:35 0次 阅读
TRACO POWER 简介  

创芯海微红外热电堆测温裸芯片芯片项目获2020IAIC大赛二等奖

2020年11月27日,中国芯应用创新高峰论坛暨IAIC大赛颁奖典礼在东莞南方软件园松山湖园区隆重举....
的头像 Les 发表于 12-01 17:46 199次 阅读
创芯海微红外热电堆测温裸芯片芯片项目获2020IAIC大赛二等奖

数字电源如何分类?

数字电源有很多种形态,在几乎所有的数字转换器中,一个共同的元素是具有通信总线,通常基于PMBus协议....
的头像 璟琰乀 发表于 12-01 17:45 187次 阅读
数字电源如何分类?

开关电源的三种检修技巧分享

  1、开关电源始终无电压输出的原因   开关电源始终无电压输出是指开关电源各输出端,在按电源开关开机后始终为0V,这种情...
发表于 12-01 17:39 496次 阅读
开关电源的三种检修技巧分享

使用数字功率转换器与PMBus通信的系统级好处

本文将深入探讨使用数字功率转换器与PMBus通信的系统级好处。 PMBus可以为交直流电源和DC/D....
的头像 璟琰乀 发表于 12-01 17:08 213次 阅读
使用数字功率转换器与PMBus通信的系统级好处

高性能二阶Σ-Δ调制器ADuM7702的性能及应用

ADuM7702 是一款高性能二阶Σ-Δ 调制器,具有基于 ADI 公司iCoupler® 技术的片....
发表于 12-01 16:54 78次 阅读
高性能二阶Σ-Δ调制器ADuM7702的性能及应用

FX293X-100A-0010-L TE Connectivity FX29压力称重传感器

nectivity FX29压力称重传感器具有6V额定电源电压、3mA工作电流以及50MΩ绝缘电阻。FX29压力称重传感器设计紧凑,具有较高的超量程能力,采用不锈钢外壳。与以前的称重传感器设计相比,这些称重传感器具有更精确的尺寸控制和更佳的性能。FX29压力称重传感器非常适合用于医用输液泵、电动工具、机器人和制造设备。 特性 紧凑型设计 mV或放大的模拟输出 可选的I2C数字接口 较高的超量程能力 低功耗 坚固的Microfused传感元件 不锈钢外壳 多个称重量程 规范 电源电压:5.25V至6V 额定电流:3mA 输入电阻:2.4kΩ至3.6kΩ 带宽:1.0kHz 睡眠模式电流:5µA 储存温度范围:-40°C至+85°C 应用 医用输液泵 模拟和数字秤 健身和运动器材 有效负载称...
发表于 11-03 15:10 20次 阅读
FX293X-100A-0010-L TE Connectivity FX29压力称重传感器

TN6050-12PI STMicroe lectronics标准晶闸管

统给定环境是简易栅极驱动或电源电压时,STMicroelectronics标准晶闸管非常宝贵。该器件涵盖跨接器保护、电机控制、电源网络开关和各种能量脉冲输送系统。ST的SCR器件的峰值电压高达1200V,最大电流高达50A,栅极触发电流为5至80mA。它们可采用DPAK、IPAK、TO220AB、TO220 FP、D2PAK、TO220AB Ins.、RD91、TOP-3和TO247封装。 特性 峰值电压高达1200V 最大电流高达50A 栅极触发电流为5至80mA 可采用DPAK、IPAK、TO220AB、TO220 FP、D2PAK、TO220AB Ins.、RD91、TOP-3和TO247封装。 应用 太阳能/风能可再生能源逆变器和整流器 固态继电器 (SSR) 不间断电源 (UPS) 工业SMPS 旁路 交流/直流浪涌电流限制器(ICL) 电池充电器 交流/直流电压控制整流器 工业焊接系统 非车载电池充电器 软...
发表于 10-29 14:06 12次 阅读
TN6050-12PI STMicroe lectronics标准晶闸管

MAXM15068AMB+ MaximIntegrated MAXM15068稳压器IC和电源模块

Integrated MAXM15068稳压器IC和电源模块 实现散热更好、尺寸更小且更加简单的电源解决方案。MAXM15068是具有集成控制器的高效率、同步降压直流-直流模块。它还集成了MOSFET、补偿元件和电感器(可以在宽输入电压范围内工作)。该模块在7.5V至60V输入范围内工作,可提供高达200mA输出电流。它具有5V至12V可编程输出范围。该模块大大降低了设计复杂度、制造风险,并提供了真正的即插即用式电源解决方案,缩短了产品的上市时间。 特性 简单易用 宽输入范围:7.5V至60V 可调输出电压范围:5V至12V 反馈精度:±1.44% 输出电流高达200mA 内部补偿 全陶瓷电容器 高效率 可选PWM或PFM工作模式 关断电流:低至2.2μA(典型值) 灵活的设计 内部软启动和预偏置启动 开漏电源良好输出(RESET引脚) 可编程EN/UV...
发表于 10-29 12:44 14次 阅读
MAXM15068AMB+ MaximIntegrated MAXM15068稳压器IC和电源模块

MAX25014ATG/V+ MaximIntegrated MAX25014汽车级4通道背光驱动器

Integrated MAX25014汽车级4通道背光驱动器具有IC控制的脉宽调制 (PWM) 调光和混合调光功能,非常适合用于汽车仪表板和信息娱乐显示屏。集成电流驱动,每路可支持高达150mA LED灌电流。该器件采用2.5V至36.0V的宽输入电压范围,并能承受汽车负载突降事件。 内部电流模式直流-直流开关控制器可配置为升压或SEPIC拓扑,工作频率范围为400kHz至2.2MHz。集成的扩频有助于降低EMI。该器件采用自适应输出电压调节机制,可最大限度地降低LED电流驱动通路的功耗。 包含用于外部nMOSFET系列开关的控制,以降低背光关闭时的静态电流,并在发生故障时断开升压转换器。 MAX25014符合AEC-Q100标准,采用24引脚TQFN封装,设计用于在-40°C至+125°C温度范围内工作。 特性 宽电压范围运行 启动后工作电源电压低至2.5V 承受高达40V的负载突降 高度集成 完整的4通道解决方案,包括升压控制器 I2C控制,可最大限度地减少元件数量 ...
发表于 10-28 14:55 16次 阅读
MAX25014ATG/V+ MaximIntegrated MAX25014汽车级4通道背光驱动器

LDO40LPU50RY STMicroelectronics LDO40L 低压差稳压器

oelectronics LDO40L低压差稳压器是一款400mA、38V LDO,非常适合用于严苛的汽车环境。LDO40L稳压器的静态电流低至45uA,因此适合用于永久连接电池电源的应用。当点火开关关闭时且电子模块保持活动模式时,此特性尤其重要。 LDO40L具有各种嵌入式保护功能,包括电流限制和热关断。另外,LDO40L还具有-0.3V至40V输入电压范围、低压差以及低静态电流等特性,因此适合用于低功耗工业和消费类应用。 LDO40L低压差稳压器符合汽车应用类AEC-Q100标准,采用带可湿性侧翼的紧凑型DFN-6 (3x3) 封装。 特性 符合AEC-Q100标准(1级) 低静态电流:45µA(无负载时的典型值) 高达38V的宽输入工作电压范围 低启动电压:3.5V 输出电流:高达400mA 输出电压选项: 可调电压:最低2.5V 固定电压:3.0V、3.3V、5.0V、8.5V 输出电压精度: ±1%(25°C时的典型值) ±3%(包括线路...
发表于 10-28 09:50 23次 阅读
LDO40LPU50RY STMicroelectronics LDO40L 低压差稳压器

M95M04-DRMN6TP STMicroelectronics M95M04 4MB 串行EEPROM

oelectronics M95M04 4MB串行EEPROM组织为524288 x8位,通过SPI总线访问。这些EEPROM的电源电压范围为1.8V至5.5V,保证工作温度范围为-40°C至85°C。这些串行EEPROM具有512字节识别页面,用于存储敏感的应用参数,这些参数可永久锁定在只读模式下。 特性 兼容SPI总线 存储器阵列: 4mbeeprom 512字节页面大小 额外识别页面 增强ESD保护 封装: SO8n(m95m04-drmn6tp) tssop8(m95m04-drdw6tp) 规范 写入时间: 5ms内字节写入 5ms内页面写入 最高时钟频率:10MHz 单电源电压:1.8V至5.5V 工作温度范围:-40°C至85°C 超过4百万次写入循环 数据保留超过40年 功...
发表于 10-28 09:37 12次 阅读
M95M04-DRMN6TP STMicroelectronics M95M04 4MB 串行EEPROM

MAX20087ATPA/VY+ Maxim Integrated MAX2008x相机电源保护IC

Integrated MAX2008x相机电源保护IC是双路/四路相机保护器IC,可为四个输出通道中的每一个提供高达600mA负载电流。这些IC采用3V至5.5V电源供电,相机电源电压范围为3V至15V,在300mA时输入至输出电压降为110mA(典型值)。MAX2008x IC具有使能输入和IC接口,用于读取器件的诊断状态。该IC设有板载ADC,可通过每个开关读取电流。MAX2008x相机电源IC包括分别在每个输出通道上的过热关断和过流限制。该电源保护IC的理想应用是雷达和相机模块同轴电缆供电。 特性 小尺寸解决方案: 多达四个600mA保护开关 输入电源:3V至15V 3V至5.5V服务电源 26V电池短路隔离 可调电流限制:100mA至600mA 可选I2C地址 小型 (4mm x 4mm) 20引脚SWTQFN封装 精度: 电流限制精度:±8% 0.5ms软启动 0.25ms软关断 关断电流:0.3μA 压降:110m...
发表于 10-21 10:50 21次 阅读
MAX20087ATPA/VY+ Maxim Integrated MAX2008x相机电源保护IC

MAXM17635AMG+ Maxim Integrated MAXM17633、MAXM17634、MAXM17635电源模块

Integrated MAXM17633、MAXM17634和MAXM17635电源模块是一系列稳压器IC和电源模块。这些器件实现散热更好、尺寸更小且更加简单的电源解决方案。MAXM17633、MAXM17634和MAXM17635具有集成控制器、MOSFET、补偿元件和电感器,可在宽输入电压范围内工作。该模块在4.5V至36V输入范围内工作,可提供高达2A输出电流。 特性 简单易用 宽输入范围:4.5V至36V 0.9V至12V可调输出 (MAXM17635) 3.3V和5V固定输出电压版本 (MAXM17633和MAXM17634) 400kHz至2.2MHz可调频率,可实现与外部时钟同步 反馈精度:±1.2% 输出电流:高达2A 内部补偿 陶瓷电容器 高效率 可选的PWM、PFM或DCM工作模式 关断电流:低至2.8μA(典型值) 灵活的设计 可编程软启动和预偏置启动 ...
发表于 10-21 10:20 77次 阅读
MAXM17635AMG+ Maxim Integrated MAXM17633、MAXM17634、MAXM17635电源模块

MAXM17630AME+ Maxim Integrated MAXM17630 MAXM17631和MAXM17632电源模块

Integrated MAXM17630、MAXM17631和MAXM17632喜马拉雅uSLIC™降压电源模块可用来设计散热更好、尺寸更小、更加简单的电源解决方案。MAXM17630和MAXM17631是高效同步降压型DC-DC模块,具有集成控制器、MOSFET、补偿元件和电感器,可在宽输入电压范围内运行。 该电源模块的工作电压范围为4.5V至36V,可提供高达1A的输出电流。MAXM17630和MAXM17631模块分别具有3.3V和5V固定输出电压。MAXM17632模块具有可调输出电压(0.9V至12V)。该器件提供真正的即插即用电源解决方案,大大降低了设计复杂性和制造风险,缩短了上市时间。内部补偿覆盖整个输出电压范围,因此无需外部补偿元件。 MAXM17630/MAXM17631/MAXM17632电源模块采用峰值电流模式控制架构,可在脉宽调制 (PWM) 、脉频调制 (PFM) 或断续导通模式 (DCM) 下工作,从而在轻负载条件下实现高效率。该模块系列在-40°C至+125°C范围内的反馈电压调节精度为±1.2%。 MAXM17630/MAXM17631/MAXM17632电源模块采用紧凑的薄型16引脚3mmx3mmx1.75mm uSLIC封装,且可提供仿真模...
发表于 10-21 09:59 24次 阅读
MAXM17630AME+ Maxim Integrated MAXM17630 MAXM17631和MAXM17632电源模块

STEVAL-ISA050V1 STEVAL-ISA050V1单片VR用于基于所述PM6641单片VR为芯片组和DDR2芯片组和DDR2 / 3演示板/ 3供应用于超移动PC(UMPC)应用

部为0.8V±1%的电压基准 2.7 V至5.5 V输入电压范围 快速响应,恒定频率,电流模式控制 三个独立,可调节, SMPS对于DDR2 / 3(VDDQ)和芯片组供应 S3-S5状态兼容DDR2 / 3部分 有源软端所有输出 为VDDQ可选跟踪放电 独立的电源良好信号 脉冲在轻负载跳过 可编程电流限制和软启动所有输出 锁存OVP,UVP保护 热保护 参考和终止电压(VTTREF和VTT )±2的.apk LDO为DDR2 / 3端点(VTT)与折返 远程VTT输出感测 在S3高阻VTT输出 ±15 mA低噪声DDR2 / 3缓冲基准(VTTREF) 在STEVAL-ISA050V1演示板是基于PM6641,这是一个单片电压调节器模块,具有内部功率MOSFET,专门设计来提供DDR2 /在超移动PC和房地产便携式系统3内存和芯片组。它集成了三个独立的,可调节的,恒定频率的降压转换器,一个±2的.apk低压降(LDO)线性调节器和±15 mA低噪声缓冲基准。每个调节器提供基本电压下(UV)和过电压(OV)的保护,可编程软启动和电流限制,有源软端的和跳脉冲在轻负载。...
发表于 05-21 05:05 62次 阅读
STEVAL-ISA050V1 STEVAL-ISA050V1单片VR用于基于所述PM6641单片VR为芯片组和DDR2芯片组和DDR2 / 3演示板/ 3供应用于超移动PC(UMPC)应用

AEK-MOT-SM81M1 AEK-MOT-SM81M1根据该L99SM81V用于汽车应用的步进电机驱动器评估板

用于汽车应用L99SM81V可编程步进电机驱动器板的功能: 具有微步进和保持功能 BEMF监测失速检测 经由SPI可编程配置 5V内部线性电压调节器(输出上板连接器可用) 板反向电池保护用STD95N4F3 MOSFET,其可以具有两个被取代可选地安装二极管和一个跨接 输入工作电压范围从6 V至28 V 输出电流至1.35A 板尺寸:65毫米长×81毫米宽×11毫米最大元件高度 WEEE和RoHS标准 所有ST组分是合格汽车级 的AutoDevKit部分™主动 应用:汽车双极步进电动机 在AEK-MOT-SM81M1评估板设计用于驱动在微步进模式中的双极步进电机,与COI升电压监测失速检测。...
发表于 05-20 18:05 64次 阅读
AEK-MOT-SM81M1 AEK-MOT-SM81M1根据该L99SM81V用于汽车应用的步进电机驱动器评估板

ST-MOSFET-FINDER ST-MOSFET-FINDERSTPOWER MOSFET取景移动应用程序的平板电脑和智能手机

或产品号的产品搜索能力 技术数据表下载和离线咨询 访问主要产品规格(主要电气参数,产品一般说明,主要特点和市场地位) 对产品和数据表 能够通过社交媒体或通过电子邮件共享技术文档 适用于Android收藏节™和iOS™应用商店 ST-MOSFET-Finder是可用于Android™和iOS™的应用程序,它可以让你探索的ST功率MOSFET产品组合使用便携设备。您可以轻松地定义设备最适合使用参数搜索引擎应用程序。您还可以找到你的产品由于采用了高效的零件号的搜索引擎。...
发表于 05-20 17:05 93次 阅读
ST-MOSFET-FINDER ST-MOSFET-FINDERSTPOWER MOSFET取景移动应用程序的平板电脑和智能手机

STEVAL-POE006V1 STEVAL-POE006V13.3V / 20A 有源钳位正激转换器 以太网供电(PoE)的IEEE 802.3bt标准的参考设计

805的PoE-PD接口的 特点: 系统在封装中集成一个双活性桥,热插拔MOSFET和PoE的PD 支持传统高功率,4对应用 100伏与0.2Ω总路径电阻N沟道MOSFET,以每个有源桥 标识哪些种PSE(标准或传统)它被连接到,并提供成功的符合IEEE 802.3af / AT / BT分类指示为T0,T1和T2信号的组合(漏极开路) 通过STBY,仿和RAUX控制信号智能操作模式选择的PM8804 PWM控制器的 QFN 56 8x8mm封装43个管脚和6个露出垫 特点: PWM峰值电流模式控制器 输入操作电压高达75伏 内部高电压启动调节器与20毫安能力 可编程固定频率高达1MHz 可设置的时间 软关闭(任选地禁用) 双1A PK ,低侧互补栅极驱动器 GATE2可以被关闭以降低功耗 80 %的最大占空比与内部斜率补偿 QFN 16 3x3mm的封装,带有裸垫 此参考设计表示3.3 V,20 A转换器解决方案非常适合各种应用,包括无线接入点,具有的PoE-PD接口和一个DC-DC有源钳位正激变换器提供。...
发表于 05-20 12:05 62次 阅读
STEVAL-POE006V1 STEVAL-POE006V13.3V / 20A 有源钳位正激转换器 以太网供电(PoE)的IEEE 802.3bt标准的参考设计

STEVAL-ISA165V1 用于与STP120N4F6 LLC谐振转换器SRK2001自适应同步整流控制器

LLC谐振变换器的同步整流器,具有自适应的导通和关断 V CC 范围:4.5 V至32 V 最大频率:500kHz的 对于N沟道MOSFET双栅驱动器(STRD级驱动程序) SR MOSFET类型:STP120N4F6(40 N - 4.3MΩ)TO -220 符合RoHS 在STEVAL-ISA165V1是产品评估电路板,旨在演示SRK2001同步整流控制器的性能。所述SRK2001器具的控制方案特异于在使用的变压器与绕组的全波整流中间抽头次级LLC谐振转换器的次级侧同步整流。它提供了两个高电流栅极驱动输出(用于驱动N沟道功率MOSFET)。每个栅极驱动器被单独地控制和联锁逻辑电路防止两个同步整流器(SR)MOSFET同时导通。装置的操作是基于两者的导通和关断的同步整流MOSFET的自适应算法。在快速的负载转变或上述谐振操作期间,另外的关断机构设置的基础上,比较器ZCD_OFF触发非常快的MOSFET关断栅极驱动电路。该板包括两个SR的MOSFET(在一个TO-220封装),并且可以在一个现有的转换器,作为整流二极管的替代很容易地实现。...
发表于 05-20 12:05 67次 阅读
STEVAL-ISA165V1 用于与STP120N4F6 LLC谐振转换器SRK2001自适应同步整流控制器

STEVAL-IPMM15B STEVAL-IPMM15B基于STIB1560DM2T-L SLLIMM第二系列MOSFET IPM 1500W的电机控制电源板

电压:125 - 400 VDC 额定功率:高达1500W的 允许的最大功率是关系到应用条件和冷却系统 额定电流:最多6 A 均方根 输入辅助电压:高达20 V DC 单或用于电流检测的三分流电阻(与感测网络) 电流检测两个选项:专用的运算放大器或通过MCU 过电流保护硬件 IPM的温度监测和保护 在STEVAL-IPMM15B是配备有SLLIMM(小低损耗智能模制模块)第二串联模块的小型电动机驱动电源板第二系列n沟道超结的MDmesh™DM2快速恢复二极管(STIB1560DM2T-L)。它提供了一种用于驱动高功率电机,用于宽范围的应用,如白色家电,空调机,压缩机,电动风扇,高端电动工具,并且通常为电机驱动器3相逆变器的负担得起的,易于使用的解决方案。...
发表于 05-20 10:05 64次 阅读
STEVAL-IPMM15B STEVAL-IPMM15B基于STIB1560DM2T-L SLLIMM第二系列MOSFET IPM 1500W的电机控制电源板

NCP81143 VR多相控制器

43多相降压解决方案针对具有用户可配置3/2/1相位的Intel VR12.5兼容CPU进行了优化。该控制器结合了真正的差分电压检测,差分电感DCR电流检测,输入电压前馈和自适应电压定位,为台式机和笔记本电脑应用提供精确调节的电源。该控制系统基于双边沿脉冲宽度调制(PWM)与DCR电流检测相结合,以降低的系统成本提供对动态负载事件的最快初始响应。它具有在轻负载运行期间脱落到单相的能力,并且可以在轻负载条件下自动调频,同时保持优异的瞬态性能。 NCP81143提供两个内部MOSFET驱动器,带有一个外部PWM信号。提供高性能操作误差放大器以简化系统的补偿。获得专利的动态参考注入无需在闭环瞬态响应和动态VID性能之间进行折衷,从而进一步简化了环路补偿。获得专利的总电流求和提供高精度的数字电流监控。 应用 终端产品 基于工业CPU的应用程序 信息娱乐,移动,自动化,医疗和安全 电路图、引脚图和封装图...
发表于 08-09 11:36 422次 阅读
NCP81143 VR多相控制器

NCP4200 具有I2C接口的多相同步降压转换器

0是一款集成电源控制IC,具有I 2 C接口。它结合了高效,多相,同步降压开关稳压控制器和I 2 C接口,可实现关键系统参数的数字编程。 特性 优势 I 2 C 启用关键系统参数的数字化编程 快速增强型PWM弹性模式架构 出色的负载瞬态性能 应用 终端产品 CPU Vcor​​e 游戏,桌面,服务器 电路图、引脚图和封装图
发表于 07-29 18:02 160次 阅读
NCP4200 具有I2C接口的多相同步降压转换器

NCP5230 低压同步降压控制器

0是一款单相解决方案,具有差分相电流检测,同步输入,远程接地节能操作和栅极驱动器,可提供精确调节的电源。自适应非重叠栅极驱动和省电操作电路为服务器,笔记本和台式机系统提供低开关损耗和高效率解决方案。提供高性能操作误差放大器以简化系统的补偿。 NCP5230还具有软启动序列,精确的过压和过流保护,用于电源轨的UVLO和热关断。 特性 高性能误差放大器 >内部软启动/停止 0.5%内部电压精度,0.8 V基准电压 OCP精度,锁存前四次重入时间无损差分电感电流检测内部高精度电流检测放大器振荡器频率范围100 kHz 1000 kHz 20 ns自适应FET内部栅极驱动器非重叠时间 5.0 V至12 V操作支持1.5 V至19 V Vin Vout 0.8 V至3.3 V(具有12 VCC的5 V电压)通过OSC引脚实现芯片功能锁存过压保护(OVP)内部固定OCP阈值保证启动预充电负载 热补偿电流监控 Shutdow n保护集成MOSFET驱动器集成BOOST二极管,内部Rbst = 2.2 自动省电模式,最大限度地提高光效率负载运行同步功能远程地面传感这是一个无铅设备 应用 桌面和服务器系统 电路图、引脚图和封装图...
发表于 07-29 17:02 280次 阅读
NCP5230 低压同步降压控制器

NCP4208 同步降压转换器 8相 VR11.1可编程 带I2C接口

8是一款集成电源控制IC,具有I 2 C接口。 NCP4208是一款高效,多相,同步降压开关稳压控制器,可帮助设计高效率和高密度解决方案。 NCP4208可编程为1,2,3,4,5,6,7或8相操作,允许构建多达8个互补降压开关级。 特性 优势 快速增强PWM 出色的负载转换性能 应用 终端产品 CPU Vcor​​e 台式电脑,服务器 电路图、引脚图和封装图
发表于 07-29 17:02 129次 阅读
NCP4208 同步降压转换器 8相 VR11.1可编程 带I2C接口

NCP3030 同步PWM控制器

0是一款PWM器件,设计用于宽输入范围,能够产生低至0.6 V的输出电压.NCP3030提供集成栅极驱动器和内部设置的1.2 MHz(NCP3030A)或2.4 MHz( NCP3030B)振荡器。 NCP3030还具有外部补偿跨导误差放大器,内置固定软启动。保护功能包括无损耗电流限制和短路保护,输出过压保护,输出欠压保护和输入欠压锁定。 NCP3030目前采用SOIC-8封装。 特性 优势 输入电压4.7 V至28 V 从不同输入电压源调节的能力 0.8 V +/- 1.5%参考电压 能够实现低输出电压 1200 kHz操作(NCP3020B - 2400 kHz) 高频操作允许使用小尺寸电感器和电容器 > 1A驱动能力 能够驱动低Rdson高效MOSFET 电流限制和短路保护 高级保护功能 输出过压和欠压检测 高级保护功能 具有外部补偿的跨导放大器 能够利用所有陶瓷输入和输出电容器 集成升压二极管 减少支持组件数量和成本 受管制的软启动 已结束软启动期间的环路调节可防止任何尖峰或下垂 AEC-Q100和PPAP兼容(NCV3030) 适用于汽车应用 应用 终端产品 ...
发表于 07-29 17:02 196次 阅读
NCP3030 同步PWM控制器