0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

以Analog Devices为例实现稳定准确的SAR ADC转换方案

电子设计 来源:Analog Devices 作者:Analog Devices 2021-01-04 15:31 次阅读

许多数据采集、工业控制和仪表应用都需要超高速模数转换器ADC),而逐次逼近寄存器 (SAR) 转换器则能完全满足这一要求。然而,我们必须确保 SAR 转换器周围的外部电路也能胜任这一任务,才能确保成功的转换结果。对于 SAR 转换器来说,需要特别注意的关键端子是其模拟信号输入端——如果不加以重视,这些输入引脚会产生稳定性问题和电容电荷“反冲”,从而导致转换不准确并延长信号采集时间。

在 SAR 转换器应用中,精确控制输入信号的解决方案在于运算放大器(运放)的驱动。如搭配适当的输出电阻和电容值,这些器件就是高分辨率、16 位和 20 位 SAR 转换器系统的高精度稳健解决方案的基础。

本文将简要讨论实现稳定准确的 SAR ADC 转换的相关问题。然后,介绍一款合适的运放来驱动 SAR ADC,并说明如何实现必要的输入驱动电路。我们将以 Analog Devices 的解决方案为例进行说明。

SAR ADC 输入电路

SAR ADC 驱动电路具有将 ADC 与其信号源隔离的运算放大器(A1 和 A2)(图 1)。在该电路中,Rext 通过“隔离”放大器的输出级与 ADC 容性负载(CIN+ 和 CIN-)和 Cext 隔离来保持稳定。Cext 和 CREF 为 ADC 提供了一个近乎完美的输入源,可以吸收来自 IN+、IN- 和 REF 输入端子的开关电荷注入。输入端子 (IN+, IN-) 在转换器的采集期间跟踪输入信号 (VSIG+, VSIG-) 的电压,为 ADC 输入采样电容 CIN+ 和 CIN- 充电。

以 Analog Device 的 AD7915 (16 位)和 AD4021(20 位)SAR ADC 为例观察 ADC 内部,可以看到该器件使用了电荷再分配数模转换器DAC)。容性 DAC 有两个相同的二元加权电容阵列。这两个电容阵列连接非反相和反相比较器输入端(图 2)。

在采集阶段,输入端(IN+ 和 IN-)切换到电容阵列。此外,SW+ 和 SW- 闭合,将最小有效位 (LSB) 电容与地 (GND) 相连。在这种状态下,电容阵列成为采样电容,采集 IN+ 和 IN- 模拟信号。采集阶段结束后,控制逻辑(右侧)的 CNV 输入变为高电平,启动转换阶段。

转换阶段开始时,先断开 SW+ 和 SW-,将两个电容阵列切换到 GND。在这种配置下,捕获的 IN+ 和 IN- 差分电压会导致比较器变得不平衡。电荷再分配 DAC 在 GND 和 REF 之间有条不紊地将电容器阵列的每个元件从最重要的位 (MSB) 切换到 LSB。比较器输入按二元加权电压步长来变化 (VREF/2N-1, VREF/2N-2.。.VREF/4, VREF/2)。控制逻辑将开关从 MSB 切换为 LSB,使得比较器回到平衡状态。这个过程结束后,ADC 返回采集阶段,控制逻辑产生 ADC 输出代码。

输入电荷注入、电路稳定性和驱动 AD7915 ADC

转换过程的关键是获取准确的输入信号电压。当驱动放大器准确地向输入电容器 CIN+ 和 CIN- 进行充电时,ADC 数据转换过程就会顺利进行,同时保持稳定,直至 ADC 采集时间结束。对设计者来说,问题在于 ADC 的输入端引入了一个电容 (CIN+, CIN-) 以及需要驱动放大器进行管理的开关噪声或“反冲”电荷注入。

放大电路 Bode plot 可以快速估算电路稳定性。Bode plot 工具可以近似地描述放大器的开环和系统闭环增益传递函数的大小(图 3)。

y 轴量化了放大器电路的开环增益 (AOL) 和闭环增益 (ACL),其中放大器的 AOL 曲线从 130 分贝 (dB) 开始,闭环增益 ACL 等于 0dB。沿 X 轴的单位以对数形式量化了从 100 赫兹 (Hz) 到 1 千兆赫兹 (GHz) 的开环和闭环增益频率。

在图 3 中,放大器在大约 220Hz (fO) 时的直流开环增益以 -20dB/ 十倍频程的速度从 130dB 下降。随着频率的增加,这种衰减在持续并在大约 180 兆赫兹 (MHz) 时跨过 0dB。由于这条曲线表示单极系统,所以分频器频率 fU 等于单位增益稳定放大器的增益带宽乘积 (GBWP)。该图代表一个稳定的系统,因为 AOL 和 ACL 的截止率是 20dB/ 十倍频程。

加入 Rext 和 Cext 以及 SAR ADC 后,通过创建系统零点和极点来修改放大器电路(图 4)。该系统包括一个 16 位、每秒 1 兆次 (MSPS) 的 AD7915 差分 PulSAR ADC 和一个 180 MHz、轨至轨输入 / 输出 ADA4807-1 放大器,该器件由 Analog Devices 提供。由于存在 30 皮法 (pF)(典型值)的 ADC 输入电容负载,放大器和 ADC 的组合需要 Rext。该电路还需要 Cext 作为充电筒,在 ADC 输入端提供足够的电荷,以准确匹配输入电压。

如图 4 所示,由于电路在初始采集时 ADC 的电容负载和 ADC 的开关电荷注入,有可能发生振荡。Rext/Cext 放大器输出元件所产生的额外极点和零点保证了系统稳定,所以开环和闭环增益曲线交点大于 20dB/ 十倍频程,使相位裕度小于 45°。这种配置与 fP2 和 fZ2 一起构成一个不稳定电路。

为避免不稳定,在评估电路中带有 Rext 和 Cext 的放大器开环增益曲线时,设计人员需要考虑放大器的开环输出电阻 RO 的影响。阻值为 50 欧姆 (W) 的 RO 与 Rext、Cext 的组合通过引入一个极点(fP,公式 1)和一个零点(fZ,公式 2)来修正开环响应曲线。RO、Rext 和 Cext 的值决定了 fP 的转折频率。Rext 和 Cext 的值决定了零转折频率 fZ。

fP 和 fZ 的计算结果是:

fP1 = 842 kHz

fZ1 = 2.95 MHz

其中:RO = 50 W

Rext = 20 W

Cext = 2.7 纳法拉 (nF)

fP2 = 22.7 MHz

fZ2 = 79.5 MHz

其中:RO = 50 W

Rext = 20 W

Cext = 0.1 nF

上述 fP1 和 fZ1 的值使 AD7915 和 ADA4807-1 成为一个稳定的系统。

驱动 Easy Drive AD4021 SAR ADC

AD7915 的替代产品是 AD4021 20 位 1 MSPS Easy Drive SAR 转换器。AD4021 器件系列将输入反冲和输入电流显著降低至 0.5 微安 (μA)/MSPS。Easy Drive 器件的特点是能降低功耗和信号链复杂性。

AD4021 的模拟输入端采用了能够降低典型开关式电容 SAR 输入非线性电荷反冲的电路。因为减少了反冲并延长了采集阶段,因此可以使用较低带宽、较低功率的驱动放大器(图 5)。

减少反冲并延长采集时间,也使得输入电阻电容 (RC) 滤波器中的 Rext 电阻值增大,Cext 电容相应减小。这种较小的 Cext 放大器负载组合提高了稳定性,降低了功耗。

使用单路 5 伏电源的 AD4021 的推荐连接图似乎具有类似电路图。但对放大器的要求降低了,Rext/Cext(R 和 C)的值更小(图 6)。

图 6 中,基于 SAR 的 AD4021 也采用了电荷再分配采样 DAC。ADC 有一个板载转换时钟和串行时钟。因此,转换过程不需要同步时钟 (SCK) 输入。这种时钟配置可以延长采集时间,通过为输入信号提供更长的时间使其建立至最终值,从而提高精度。

AD7915 和 AD4021 的驱动放大器主要考虑的是噪声,因为放大器 /Rext/Cext 组合必须从满量程阶跃到 16 位水平 (0.0015%, 15ppm) 的 AD7915,以及 20 位水平 (0.00001%, 1ppm) 的 AD4021。

为了保持 AD7915 和 AD4021 的信噪比( SNR) 性能,驱动放大器的噪声必须小于 ADC 噪声的三分之一。AD4021 的噪声为 60 微伏有效值 (mVrms),这就要求放大器 /Rext/Cext 组合的噪声小于 20mVrms。AD4021 的噪声为 31.5 mVrms,这就要求放大器 /Rext/Cext 组合的噪声小于 10.5 mVrms。

Analog Devices 的精密 ADC 驱动器工具可帮助设计人员快速计算出正确的 Rext 和 Cext 值。通过选定的驱动器和 ADC,该工具可以模拟电路的建立时间、噪声和失真行为。

结语

SAR ADC 将继续在超高速数据采集、工业控制和仪器仪表应用中占据主导地位。然而,我们需要考虑这类器件的外部输入电路——驱动放大器和输入滤波器,以适应潜在的开关电荷注入和放大器稳定性问题。

大多数 SAR 转换器(如 AD7916 和 AD4021)精确控制输入信号的解决方案都依赖运放驱动器,如本示例中的 ADA4807-1。如图所示,这类器件在适当的输出电阻和电容值的支持下形成一个坚实的基础,然后在此基础上建立一个高精度、稳健、高分辨率、16 位或 20 位 SAR 转换器系统。
编辑:hfy

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 转换器
    +关注

    关注

    27

    文章

    8172

    浏览量

    141580
  • SAR
    SAR
    +关注

    关注

    3

    文章

    357

    浏览量

    45586
  • 隔离放大器
    +关注

    关注

    6

    文章

    176

    浏览量

    64344
收藏 人收藏

    评论

    相关推荐

    亚德诺半导体评估板 ADS8-V1EBZ Evaluation Board | Analog Devices 全新原装现货

    。 DDR4 SDRAM。 简单的USB 3.0端口接口。 当连接到指定的Analog Devices高速adc评估板时,ADS8-V1用作数据采集板。设计用于支持最高速度的JESD204B A/D
    发表于 04-09 17:10

    关于NS SAR ADC的paper结构介绍

    NS SAR的主要优势在于其能够在传统SAR ADC的结构内部实现Delta-sigma的操作,这无论从能量和面积上讲都是非常高效的。
    的头像 发表于 02-18 17:26 347次阅读
    关于NS <b class='flag-5'>SAR</b> <b class='flag-5'>ADC</b>的paper结构介绍

    请问如何在PSoc4中sar adc添加更多频道?

    我使用在 PSoC Creator 中创建的 SAR ADC 项目作为示例。 我已将 ADC 输入通道(序列通道)设置最大 16 个通道,然后出现错误。 目标设备是 PSoC 410
    发表于 01-23 07:13

    R&amp;S基于Analog Devices的技术打造无线电池管理系统生产测试解决方案

    罗德与施瓦茨(以下简称R&S)与Analog Devices(ADI)展开合作,打造无线电池管理系统生产测试解决方案,推动汽车行业的无线电池管理系统 (wBMS) 技术发展
    的头像 发表于 01-12 09:15 361次阅读
    R&amp;S基于<b class='flag-5'>Analog</b> <b class='flag-5'>Devices</b>的技术打造无线电池管理系统生产测试解决<b class='flag-5'>方案</b>

    如何在定制PCB上设计精确的倾角计

    寄存器 (SAR) 模数转换器( ADC)。我选择了 24 位 SAR ADC 而不是 16 位器件,因为我深知它在物理上和实际上不可能解析
    发表于 11-27 15:13 158次阅读
    如何在定制PCB上设计精确的倾角计

    一文讲解ADC模数转换芯片的原理及转换过程

    和传输时,就需要ADC模拟转换芯片帮助我们实现这一功能。ADC芯片全称Analog-to-Digital Converter(模拟数字
    的头像 发表于 10-23 14:57 1095次阅读

    AD数据转换-SAR ADC介绍

    基本SAR(Successive Approxmation Register)ADC结构中包括采样保持S&H电路、比较器、DAC、SAR逻辑四个单元。
    的头像 发表于 09-26 10:40 909次阅读
    AD数据<b class='flag-5'>转换</b>-<b class='flag-5'>SAR</b> <b class='flag-5'>ADC</b>介绍

    12位高速多SAR A/D转换器(ADC)

    电子发烧友网站提供《12位高速多SAR A/D转换器(ADC).pdf》资料免费下载
    发表于 09-25 11:11 0次下载
    12位高速多<b class='flag-5'>SAR</b> A/D<b class='flag-5'>转换</b>器(<b class='flag-5'>ADC</b>)

    12位高速逐次逼近寄存器(SAR)模数转换器(ADC)

    电子发烧友网站提供《12位高速逐次逼近寄存器(SAR)模数转换器(ADC).pdf》资料免费下载
    发表于 09-25 10:49 0次下载
    12位高速逐次逼近寄存器(<b class='flag-5'>SAR</b>)模数<b class='flag-5'>转换</b>器(<b class='flag-5'>ADC</b>)

    SAR ADC的工作原理是什么?SAR ADC的优点和缺点有哪些?

    SAR ADC 是逐次逼近 ADC 的简称(successive approximation register),SAR ADC 的主要优点
    的头像 发表于 09-08 09:57 7655次阅读
    <b class='flag-5'>SAR</b> <b class='flag-5'>ADC</b>的工作原理是什么?<b class='flag-5'>SAR</b> <b class='flag-5'>ADC</b>的优点和缺点有哪些?

    使用M471 ADC平均模式在电动噪音环境中获得稳定ADC转换数据

    应用:本样本代码使用 M471 ADC 平均模式在电动噪音环境中获得稳定ADC 转换数据。 BSP 版本: M471系列 BSP CMSIS V3.00 000 硬件
    发表于 08-29 06:58

    如何获得ADC准确值?

    第一用户需要考虑如何获得ADC准确值。 请遵循以下步骤: 1. 确定芯片的Vref是正确的 2. 请参考M480 TRM,并设定EXTSMPT,获得足够的取样时间,只要有足够的取样时间,不会
    发表于 08-28 06:43

    SAR型与Σ-Δ型ADC的区别在哪?

    ADCAnalog to Digital Converter)模拟信号至数字信号转换器,比较关键的参数通常为采样率(采样速度)与分辨率(采样精度),但是很多时候并没有明确说明ADC
    的头像 发表于 08-10 14:41 1505次阅读

    如何实现节能模数转换

    ADI在本文介绍了一种用于高精度测量应用的低功耗模数转换器(ADC)解决方案,即SAR-ADC或Σ-Δ ADC。因为在低功耗应用中,节省的每
    的头像 发表于 07-08 14:56 264次阅读
    如何<b class='flag-5'>实现</b>节能模数<b class='flag-5'>转换</b>

    ADC(模数转换器)新手入门基本参数

    高数字信号的精度和准确性。   例如,如果ADC的采样率10 kHz,则意味着ADC每秒钟会对模拟信号进行10,000次采样,将其转换为数
    发表于 05-15 15:18