0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于LM386的实验电路设计 高频信号对直流偏置的影响

电子设计 来源:CSDN博主 作者:卓晴 2021-01-03 09:19 次阅读

引起运放的直流偏移量改变与输入信号的关系

通过实验来确定引起运放直流偏移量的改变与输入信号的频率和幅值之间的关系。

分别在多组输入频率的情况下,逐步增加输入信号的幅值,观察运放的输出偏移量的改变。这组信号应该包括:

信号的频率应该在运放的通带范围内和范围外都应该有;

信号的幅值应该从微弱信号知道芯片输出饱和;

LM386实验电路

(1)LM386的实验电路如下图所示:

将LM386配置成增益为200的放大器的形式,输入的信号从PIN3通过电解电容10μ F \mu FμF耦合到电路中来。

watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3podW9xaW5nam9raW5nOTcyOTg=,size_16,color_FFFFFF,t_70#pic_center

LM386实验电路

通过小信号扫频获得LM386的幅频特性以及相应的输出输出偏移量的变化曲线。

扫频的范围从10 k H z 10kHz10kHz到2 M H z 2MHz2MHz的范围。通过确定输出增益下降到原来的1 2 {1 \over {\sqrt 2 }}21的时候,所对应的频率为LM386的高频的截止频率。2.5 ⋅ 1 2 = 1.768     ( V ) 2.5 \cdot {1 \over {\sqrt 2 }} = 1.768\,\,\,\left( V \right)2.5⋅21=1.768(V)

LM386的低通截止频率为:f l p s = 550 k H z f_{lps} = 550kHzflps=550kHz。

根据LM386实际幅频特性,后面选择实验的频率分别是:

通带内的频率: 1kHz, 50kHz

过渡带的频率:250kHz,550kHz(待选)

阻带内的频率:1000kHz,1500kHz(待选)。

watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3podW9xaW5nam9raW5nOTcyOTg=,size_16,color_FFFFFF,t_70#pic_center

通过扫频获得LM386的幅频特性和在不同频率下输出偏移量

freq=[10000.0, 30000.0, 50000.0, 70000.0, 90000.0, 110000.0, 130000.0, 150000.0, 170000.0, 190000.0, 210000.0, 230000.0, 250000.0, 270000.0, 290000.0, 310000.0, 330000.0, 350000.0, 370000.0, 390000.0, 410000.0, 430000.0, 450000.0, 470000.0, 490000.0, 510000.0, 530000.0, 550000.0, 570000.0, 590000.0, 610000.0, 630000.0, 650000.0, 670000.0, 690000.0, 710000.0, 730000.0, 750000.0, 770000.0, 790000.0, 810000.0, 830000.0, 850000.0, 870000.0, 890000.0, 910000.0, 930000.0, 950000.0, 970000.0, 990000.0, 1010000.0, 1030000.0, 1050000.0, 1070000.0, 1090000.0, 1110000.0, 1130000.0, 1150000.0, 1170000.0, 1190000.0, 1210000.0, 1230000.0, 1250000.0, 1270000.0, 1290000.0, 1310000.0, 1330000.0, 1350000.0, 1370000.0, 1390000.0, 1410000.0, 1430000.0, 1450000.0, 1470000.0, 1490000.0, 1510000.0, 1530000.0, 1550000.0, 1570000.0, 1590000.0, 1610000.0, 1630000.0, 1650000.0, 1670000.0, 1690000.0, 1710000.0, 1730000.0, 1750000.0, 1770000.0, 1790000.0, 1810000.0, 1830000.0, 1850000.0, 1870000.0, 1890000.0, 1910000.0, 1930000.0, 1950000.0, 1970000.0, 1990000.0] out=[0.82419807, 0.82419575, 0.82448503, 0.82504733, 0.82574511, 0.82626633, 0.82682779, 0.8270379, 0.82699768, 0.82675286, 0.82610908, 0.82507336, 0.82316792, 0.820216, 0.81550736, 0.80882822, 0.79968311, 0.78804587, 0.77358337, 0.75665184, 0.73727589, 0.71580805, 0.69303173, 0.66922485, 0.64523027, 0.62052001, 0.59537499, 0.57029527, 0.54555953, 0.52143766, 0.49803907, 0.47550978, 0.45461729, 0.43445583, 0.41523791, 0.39699324, 0.37979574, 0.36322954, 0.34768215, 0.33297385, 0.31894865, 0.30549933, 0.29280096, 0.28079123, 0.26908283, 0.25796921, 0.24704998, 0.2369045, 0.2268957, 0.21719996, 0.2024118, 0.19493669, 0.18775929, 0.18096819, 0.17442227, 0.16821082, 0.16223206, 0.15654862, 0.15111238, 0.145857, 0.14081119, 0.13596457, 0.13127437, 0.12679992, 0.1225131, 0.1183893, 0.11452258, 0.11076846, 0.10710039, 0.10352834, 0.10010201, 0.09680248, 0.09367316, 0.09066953, 0.08775142, 0.08488432, 0.08220052, 0.07953873, 0.07701299, 0.07455289, 0.07213578, 0.06982423, 0.06759745, 0.06544292, 0.0633826, 0.06128471, 0.05934194, 0.05741965, 0.05554103, 0.05366499, 0.051948, 0.05015762, 0.04846939, 0.04683666, 0.04525623, 0.04370325, 0.04228917, 0.04080258, 0.0393318, 0.03791282] offset=[2.3783, 2.3787, 2.3784, 2.3775, 2.3763, 2.3743, 2.3729, 2.3706, 2.3675, 2.3643, 2.3605, 2.3562, 2.3505, 2.3448, 2.3383, 2.3313, 2.3235, 2.3147, 2.3056, 2.301, 2.2875, 2.278, 2.2693, 2.2611, 2.2534, 2.2466, 2.2412, 2.2361, 2.2321, 2.2299, 2.2273, 2.226, 2.2243, 2.2237, 2.223, 2.2217, 2.2208, 2.2196, 2.2189, 2.2179, 2.2169, 2.2155, 2.2149, 2.2137, 2.2134, 2.212, 2.211, 2.2105, 2.2098, 2.2087, 2.2081, 2.2076, 2.2074, 2.2073, 2.2068, 2.206, 2.2057, 2.2058, 2.2061, 2.2059, 2.2062, 2.2057, 2.2062, 2.2062, 2.2064, 2.2067, 2.2075, 2.2071, 2.2075, 2.208, 2.2087, 2.2095, 2.2102, 2.2102, 2.2105, 2.2111, 2.2117, 2.213, 2.2133, 2.2141, 2.2145, 2.215, 2.2162, 2.2173, 2.218, 2.2184, 2.2193, 2.2198, 2.221, 2.2218, 2.2223, 2.2231, 2.2235, 2.2243, 2.225, 2.226, 2.2273, 2.2276, 2.2284, 2.2288]

频率不仅影响输出信号的幅值增益,同时还会引起输出信号的相位移动。下面显示了输入输出波形之间关系随着频率不同而变化。

基于LM386的实验电路设计 高频信号对直流偏置的影响

在不同频率下LM386的输入,输出波形与输入波形之间的关系

将输出信号的幅度以及它与输入信号之间的相位差绘制出来,可以清楚看到频率引起的变化。随着信号频率的增加,输出信号的幅值下降,相位在逐步落后。

不同频率下输出的幅值以及相位差

freq=[10000.0, 20000.0, 30000.0, 40000.0, 50000.0, 60000.0, 70000.0, 80000.0, 90000.0, 100000.0, 110000.0, 120000.0, 130000.0, 140000.0, 150000.0, 160000.0, 170000.0, 180000.0, 190000.0, 200000.0, 210000.0, 220000.0, 230000.0, 240000.0, 250000.0, 260000.0, 270000.0, 280000.0, 290000.0, 300000.0, 310000.0, 320000.0, 330000.0, 340000.0, 350000.0, 360000.0, 370000.0, 380000.0, 390000.0, 400000.0, 410000.0, 420000.0, 430000.0, 440000.0, 450000.0, 460000.0, 470000.0, 480000.0, 490000.0, 500000.0, 510000.0, 520000.0, 530000.0, 540000.0, 550000.0, 560000.0, 570000.0, 580000.0, 590000.0, 600000.0, 610000.0, 620000.0, 630000.0, 640000.0, 650000.0, 660000.0, 670000.0, 680000.0, 690000.0, 700000.0, 710000.0, 720000.0, 730000.0, 740000.0, 750000.0, 760000.0, 770000.0, 780000.0, 790000.0, 800000.0, 810000.0, 820000.0, 830000.0, 840000.0, 850000.0, 860000.0, 870000.0, 880000.0, 890000.0, 900000.0, 910000.0, 920000.0, 930000.0, 940000.0, 950000.0, 960000.0, 970000.0, 980000.0, 990000.0, 1000000.0] outvolt=[0.22584419, 0.82475382, 0.82486491, 0.82523538, 0.82556415, 0.82598038, 0.82635926, 0.82664603, 0.82709187, 0.82725044, 0.8274002, 0.82752185, 0.82755609, 0.82754128, 0.8273805, 0.82705601, 0.82679054, 0.82631237, 0.82575681, 0.82499121, 0.8241603, 0.82311307, 0.82192799, 0.8203958, 0.81843567, 0.81619028, 0.81359412, 0.81027061, 0.80663774, 0.80244775, 0.79739215, 0.79188584, 0.78589378, 0.77890109, 0.77147399, 0.76367175, 0.75482663, 0.74546456, 0.73598014, 0.72555983, 0.71474164, 0.70392732, 0.69272114, 0.68118994, 0.66926258, 0.65779157, 0.64593862, 0.63362496, 0.62180828, 0.60973549, 0.59722022, 0.58531135, 0.57315515, 0.56066275, 0.54877721, 0.53699573, 0.52484147, 0.51334798, 0.50210017, 0.49056536, 0.47965149, 0.46915135, 0.4583527, 0.44815746, 0.43842109, 0.42853331, 0.41900969, 0.4100618, 0.4009368, 0.39210764, 0.38375883, 0.37539425, 0.36719945, 0.35953891, 0.35184403, 0.34426998, 0.3370194, 0.33013548, 0.32316792, 0.31627866, 0.30983772, 0.30341555, 0.29700973, 0.29096918, 0.28499429, 0.27888098, 0.27323933, 0.26767117, 0.26200829, 0.2566566, 0.25141011, 0.24606334, 0.24095441, 0.23595038, 0.2309958, 0.22622394, 0.22144326, 0.21670333, 0.21197697, 0.20202067] phase=[179.82946997, 1.09603919, 0.68930981, 5.27593761, 4.12036816, 3.56009719, 6.40419183, 7.5434949, 6.40437905, 8.39968736, 10.20685143, 9.61390633, 10.82856044, 12.47731411, 12.59220997, 13.26014638, 14.79825354, 16.12341858, 15.90459251, 17.4432251, 19.06761531, 18.99864028, 20.25875525, 21.87945888, 22.81337208, 23.3141769, 24.71068034, 26.23323794, 26.43006813, 27.99971201, 29.75344275, 30.10264579, 31.44746451, 33.20994009, 34.12499087, 34.95314661, 36.72269015, 38.33751176, 38.50817909, 40.09325434, 41.99333018, 42.20719123, 43.49944685, 45.22833651, 46.11273195, 46.61568395, 48.38039219, 49.75033543, 49.68972218, 51.23303445, 52.97677633, 53.01208647, 53.82124282, 55.76535114, 56.20661592, 56.28813701, 58.00995422, 59.04333935, 58.65643208, 59.86345398, 61.46744465, 61.02840278, 61.42889034, 63.3536829, 63.48020003, 63.17410982, 64.86901861, 65.70346797, 65.00780189, 66.07808719, 67.59411927, 66.99224626, 67.28277504, 69.07499995, 68.55944111, 68.49806151, 70.22614987, 71.02158712, 70.17624709, 71.19239234, 72.67642109, 71.9959195, 72.06874915, 73.97965967, 73.96580706, 73.18565207, 74.83069203, 75.63068931, 74.64374477, 75.62700222, 77.17809035, 76.36421717, 76.34842244, 78.31925088, 78.18787947, 77.33147592, 79.02489438, 79.90999251, 78.60636285, 79.29526603]

上图中的相位差时通过示波器采集到输入输出的波形数据,在已知信号频率的情况下通过如下公式计算出来的:

φ ( f ) = tan ⁡ − 1 [ ∑ n = 0 N − 1 d [ n ] ⋅ sin ⁡ ( t [ n ] ⋅ 2 π f ) ∑ n = 0 N − 1 d [ n ] ⋅ cos ⁡ ( t [ n ] ⋅ 2 π f ) ] \varphi \left( f \right) = \tan ^{ - 1} \left[ {{{\sum\limits_{n = 0}^{N - 1}

{d\left[ n \right] \cdot \sin \left( {t\left[ n \right] \cdot 2\pi f} \right)} } \over {\sum\limits_{n = 0}^{N - 1} {d\left[ n \right] \cdot \cos \left( {t\left[ n \right] \cdot 2\pi f} \right)} }}} \right]φ(f)=tan−1⎣⎢⎢⎡n=0∑N−1d[n]⋅cos(t[n]⋅2πf)n=0∑N−1d[n]⋅sin(t[n]⋅2πf)⎦⎥⎥⎤

具体程序代码如下:

def dataphase(t, x, freq): phase = array([i * freq * 2 * pi for i in t]) sint = sin(phase) cost = cos(phase) sind = inner(sint, x) cosd = inner(cost, x) return arctan2(sind, cosd)

(2) 在频率为1kHz下幅度扫描

设置输入信号为1kHz的正弦波,输入LM386。信号的有效值幅度从0.01逐步升高到1.00V,对应的LM386的输出以及输出直流偏移量变化如下:

基于LM386的实验电路设计 高频信号对直流偏置的影响

输入信号幅值增大与输出信号幅值、输出直流偏移量之间的关系

input=[0.01, 0.11, 0.21, 0.31, 0.41, 0.51, 0.61, 0.71, 0.81, 0.91, 1.01, 1.11, 1.21, 1.31, 1.41, 1.51, 1.61, 1.71, 1.81, 1.91, 2.01, 2.11, 2.21, 2.31, 2.41, 2.51, 2.61, 2.71, 2.81, 2.91, 3.01, 3.11, 3.21, 3.31, 3.41, 3.51, 3.61, 3.71, 3.81, 3.91, 4.01, 4.11, 4.21, 4.31, 4.41, 4.51, 4.61, 4.71, 4.81, 4.91, 5.01, 5.11, 5.21, 5.31, 5.41, 5.51, 5.61, 5.71, 5.81, 5.91, 6.01, 6.11, 6.21, 6.31, 6.41, 6.51, 6.61, 6.71, 6.81, 6.91, 7.01, 7.11, 7.21, 7.31, 7.41, 7.51, 7.61, 7.71, 7.81, 7.91, 8.01, 8.11, 8.21, 8.31, 8.41, 8.51, 8.61, 8.71, 8.81, 8.91, 9.01, 9.11, 9.21, 9.31, 9.41, 9.51, 9.61, 9.71, 9.81, 9.91] output=[0.21743324, 0.43867122, 0.66143268, 0.88032101, 1.10233027, 1.31783826, 1.46355311, 1.53936121, 1.59073906, 1.62991703, 1.65966166, 1.68351624, 1.70279447, 1.71865257, 1.73212388, 1.74360244, 1.75335902, 1.7618203, 1.76909812, 1.77547945, 1.78097756, 1.78588397, 1.79018646, 1.7939895, 1.79735324, 1.80028366, 1.80280668, 1.80500485, 1.80693721, 1.80862307, 1.80953527, 1.810916, 1.81204892, 1.81307948, 1.81388071, 1.81451906, 1.81492697, 1.8151672, 1.81519397, 1.81503148, 1.81467625, 1.8141035, 1.81342145, 1.8125589, 1.81151875, 1.81035045, 1.80902285, 1.80757608, 1.80596307, 1.80430712, 1.80240104, 1.80049343, 1.79832037, 1.79608075, 1.79344226, 1.79054995, 1.78704705, 1.78290038, 1.7782836, 1.77322069, 1.76798436, 1.7624373, 1.75692911, 1.75089386, 1.74499825, 1.73898396, 1.73284225, 1.72640065, 1.72031012, 1.71367306, 1.70742451, 1.7008635, 1.69446545, 1.68823259, 1.68118757, 1.67407344, 1.66757296, 1.66123084, 1.65485191, 1.64863174, 1.64173467, 1.63551075, 1.62939736, 1.62331599, 1.61760612, 1.61079072, 1.6047284, 1.59882852, 1.59254286, 1.58541448, 1.57799256, 1.56894639, 1.55912215, 1.54892287, 1.53831486, 1.53056251, 1.72382392, 1.74837305, 1.76296203, 1.77334578] offset=[2.4332, 2.4332, 2.433, 2.4329, 2.4325, 2.4308, 2.4329, 2.4371, 2.4334, 2.4337, 2.4341, 2.4344, 2.4346, 2.435, 2.4356, 2.4363, 2.4371, 2.4379, 2.4388, 2.4398, 2.4409, 2.4422, 2.4433, 2.4446, 2.4461, 2.4481, 2.4505, 2.4536, 2.4577, 2.4632, 2.4696, 2.4783, 2.4885, 2.5007, 2.5138, 2.5286, 2.5431, 2.5593, 2.5749, 2.5908, 2.607, 2.6232, 2.6388, 2.6542, 2.6698, 2.6846, 2.6998, 2.7145, 2.7292, 2.7429, 2.757, 2.7702, 2.7839, 2.797, 2.8102, 2.8229, 2.836, 2.8495, 2.8629, 2.8768, 2.8901, 2.9038, 2.9169, 2.9307, 2.9437, 2.9567, 2.9696, 2.983, 2.9955, 3.0086, 3.0208, 3.0335, 3.0457, 3.0577, 3.0711, 3.0843, 3.0962, 3.1079, 3.1195, 3.1309, 3.1434, 3.1547, 3.1656, 3.1766, 3.187, 3.1993, 3.2102, 3.2208, 3.232, 3.2445, 3.2574, 3.2728, 3.2905, 3.3108, 3.3364, 3.3622, 3.1882, 3.1599, 3.1452, 3.135]

20200204134213833.gif#pic_center

LM386输出波形的变化

(3) 在频率为50kHz下进行幅度扫描

在输入信号的频率为50KHz下,输出信号的有效值和直流偏移量随着输入信号的有效值从0.01V变化到1.0V的过程中对应的变化情况。

基于LM386的实验电路设计 高频信号对直流偏置的影响

在50kHz下LM386的输出信号幅度和直流偏移量随着输入信号的幅值增加变化的情况

input=[0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3, 0.31, 0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.4, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.5, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59, 0.6, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69, 0.7, 0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77, 0.78, 0.79, 0.8, 0.81, 0.82, 0.83, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 1.0] output=[0.21546304, 0.43443544, 0.65487894, 0.87157714, 1.09167747, 1.30666552, 1.49937331, 1.60794122, 1.66487502, 1.69812129, 1.71249666, 1.72351342, 1.73238449, 1.73950365, 1.74532794, 1.75011048, 1.75399456, 1.75717382, 1.75982471, 1.7620487, 1.76386182, 1.76538145, 1.76654243, 1.76747262, 1.76820382, 1.76884257, 1.7694019, 1.76991374, 1.77037848, 1.77083847, 1.77139286, 1.7720034, 1.77270269, 1.77354283, 1.77446492, 1.77546809, 1.77648393, 1.77758891, 1.77857736, 1.7794767, 1.78028155, 1.78095969, 1.78151261, 1.78195288, 1.78233327, 1.78258556, 1.78276121, 1.78279696, 1.78272762, 1.78257407, 1.78235151, 1.78201513, 1.78155986, 1.78097848, 1.78028154, 1.77954763, 1.77873435, 1.77779415, 1.77673771, 1.77556749, 1.77435292, 1.77300133, 1.77160098, 1.76997026, 1.76828686, 1.76642958, 1.76439332, 1.76199918, 1.75950496, 1.75656133, 1.75358439, 1.7501647, 1.74665279, 1.74304223, 1.7393008, 1.73492906, 1.73078122, 1.72669331, 1.72245764, 1.71818274, 1.71341674, 1.70890258, 1.70438813, 1.69972606, 1.69527206, 1.68974439, 1.68479238, 1.67985622, 1.67456521, 1.66874612, 1.66268801, 1.65535275, 1.64712723, 1.63853145, 1.62921205, 1.61640613, 1.60483713, 1.71724504, 1.82390417, 1.85828604] offset=[2.4337, 2.4333, 2.4327, 2.4318, 2.4303, 2.4259, 2.4104, 2.3744, 2.3602, 2.3423, 2.3199, 2.3018, 2.2873, 2.2753, 2.2649, 2.2559, 2.248, 2.2411, 2.235, 2.2296, 2.2248, 2.2205, 2.2169, 2.2136, 2.2108, 2.2085, 2.2068, 2.2059, 2.2061, 2.2078, 2.2121, 2.2173, 2.2242, 2.2335, 2.244, 2.256, 2.2684, 2.2824, 2.2964, 2.3107, 2.3255, 2.3404, 2.3549, 2.3693, 2.3839, 2.398, 2.4123, 2.4262, 2.4403, 2.4535, 2.4672, 2.4799, 2.4931, 2.5057, 2.5185, 2.5304, 2.5424, 2.5543, 2.566, 2.5777, 2.589, 2.6004, 2.6111, 2.6226, 2.6334, 2.6443, 2.6552, 2.6664, 2.6771, 2.6885, 2.6993, 2.7107, 2.7218, 2.7326, 2.7438, 2.7563, 2.7677, 2.7786, 2.7898, 2.8007, 2.8128, 2.824, 2.8351, 2.8464, 2.8569, 2.8698, 2.8814, 2.8926, 2.9045, 2.917, 2.9292, 2.9425, 2.9554, 2.9662, 2.975, 2.994, 3.082, 3.0082, 2.8377, 2.7622]

基于LM386的实验电路设计 高频信号对直流偏置的影响

在50kHz下输出波形随着输入信号有效值幅值从0.01V增加到1V的变化情况

(4)在频率为250kHz下进行幅度扫描

基于LM386的实验电路设计 高频信号对直流偏置的影响

在250kHz下,输入信号增大所引起的输出信号和输出偏移量之间的关系

input=[0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3, 0.31, 0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.4, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.5, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59, 0.6, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69, 0.7, 0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77, 0.78, 0.79, 0.8, 0.81, 0.82, 0.83, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 1.0] output=[0.20950925, 0.20950447, 0.42708299, 0.65066353, 0.87526108, 1.10194436, 1.27890739, 1.34043248, 1.297098, 1.21388594, 1.12789191, 1.04249122, 0.96199046, 0.89804268, 0.84799796, 0.80394616, 0.76438793, 0.72899091, 0.69673525, 0.66798083, 0.64209976, 0.61900124, 0.59716318, 0.57633875, 0.5557533, 0.53484848, 0.51357777, 0.49216555, 0.4702963, 0.44878042, 0.42878822, 0.4164051, 0.40134494, 0.39027796, 0.3823213, 0.37770251, 0.37570189, 0.3760123, 0.37834398, 0.38225653, 0.38763577, 0.39434369, 0.40229859, 0.41086331, 0.4203505, 0.43085688, 0.44179804, 0.45378952, 0.46623285, 0.47964104, 0.49307807, 0.50798434, 0.52268142, 0.53882109, 0.55489083, 0.57156475, 0.58700416, 0.60159647, 0.61457122, 0.62572134, 0.63562225, 0.64388521, 0.65131691, 0.65768593, 0.66382062, 0.66926283, 0.67447712, 0.67944574, 0.68457507, 0.6893681, 0.69450333, 0.69934451, 0.70471815, 0.71030404, 0.71675756, 0.7223471, 0.73276002, 0.74367444, 0.75516166, 0.76814534, 0.78237151, 0.80022883, 0.81856687, 0.83822166, 0.85904874, 0.87904917, 0.90244918, 0.92230826, 0.94036957, 0.95661823, 0.96976279, 0.97730508, 0.97921435, 0.97420191, 0.96334267, 0.9513854, 0.95074557, 0.96336036, 0.98729123, 1.08739098] offset=[2.4321, 2.432, 2.4269, 2.4169, 2.3984, 2.3561, 2.2555, 2.0579, 1.855, 1.6628, 1.5144, 1.3904, 1.2884, 1.2155, 1.1628, 1.119, 1.0796, 1.0429, 1.0097, 0.9812, 0.957, 0.9364, 0.91764, 0.90066, 0.88452, 0.86871, 0.85317, 0.83799, 0.82298, 0.80869, 0.7959, 0.7891, 0.77952, 0.77344, 0.76953, 0.76781, 0.76788, 0.7694, 0.77239, 0.77639, 0.78148, 0.7876, 0.79468, 0.80232, 0.81082, 0.82025, 0.83022, 0.84126, 0.8529, 0.86566, 0.87863, 0.89329, 0.90822, 0.92506, 0.94236, 0.96105, 0.97899, 0.99667, 1.0147, 1.0281, 1.0416, 1.0535, 1.0645, 1.0741, 1.0837, 1.0923, 1.1006, 1.1085, 1.1166, 1.1239, 1.1319, 1.1393, 1.1472, 1.1553, 1.1644, 1.172, 1.1867, 1.2027, 1.2208, 1.2424, 1.2668, 1.2985, 1.3322, 1.3689, 1.409, 1.4486, 1.4967, 1.539, 1.5797, 1.6204, 1.659, 1.6902, 1.7162, 1.7337, 1.7448, 1.7593, 1.7892, 1.8389, 1.9081, 2.0757]

基于LM386的实验电路设计 高频信号对直流偏置的影响

在250kHz频率下LM386输出波形变化情况

(5) 在1MHz频率下扫描输入信号的幅度

基于LM386的实验电路设计 高频信号对直流偏置的影响

在1MHz下,LM386输出幅值和直流偏移量之间的关系

input=[0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3, 0.31, 0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.4, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.5, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59, 0.6, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69, 0.7, 0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77, 0.78, 0.79, 0.8, 0.81, 0.82, 0.83, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 1.0] output=[0.07156826, 0.13567551, 0.18365756, 0.21333475, 0.2420693, 0.24945191, 0.24874718, 0.2425744, 0.23207595, 0.21591159, 0.18971254, 0.16324598, 0.1282581, 0.09301492, 0.06303308, 0.0394327, 0.00431736, 0.00515508, 0.00624612, 0.00762632, 0.00910243, 0.01036753, 0.01114557, 0.01148779, 0.01164051, 0.01181376, 0.0120646, 0.01238029, 0.01273321, 0.01310144, 0.01316929, 0.01354706, 0.01390327, 0.01425669, 0.0145837, 0.0149034, 0.01518459, 0.01547088, 0.01572488, 0.01596399, 0.01619309, 0.01640764, 0.0166039, 0.01679034, 0.01697434, 0.01713909, 0.01730456, 0.01745883, 0.01760816, 0.01774916, 0.0178907, 0.01801884, 0.01814765, 0.01826777, 0.01838658, 0.01849944, 0.01860974, 0.01871653, 0.01882061, 0.01892535, 0.01902316, 0.01912327, 0.01921615, 0.019321, 0.01942897, 0.01956314, 0.01974148, 0.01999459, 0.02031551, 0.02076343, 0.02129216, 0.02196842, 0.02274773, 0.0236555, 0.02576125, 0.02728374, 0.02875861, 0.03017276, 0.03149775, 0.03265568, 0.03375242, 0.03449485, 0.03484937, 0.03471974, 0.03410467, 0.03276292, 0.03119451, 0.03006267, 0.04090404, 0.06370496, 0.08320334, 0.1024965, 0.12083972, 0.13824793, 0.15539783, 0.17142587, 0.20312757, 0.23611274, 0.31430566, 0.35215526] offset=[2.4245, 2.3913, 2.332, 2.2463, 2.1326, 1.9988, 1.8477, 1.6904, 1.5225, 1.3404, 1.153, 0.9734, 0.83905, 0.74656, 0.67993, 0.62795, 0.5247, 0.52518, 0.52674, 0.52887, 0.53149, 0.53472, 0.53842, 0.54247, 0.5466, 0.5506, 0.55438, 0.55801, 0.56144, 0.56457, 0.56507, 0.56795, 0.57037, 0.57258, 0.57447, 0.5762, 0.57763, 0.579, 0.58014, 0.58116, 0.58207, 0.58287, 0.58355, 0.58414, 0.58466, 0.5851, 0.58549, 0.5858, 0.58606, 0.58626, 0.58642, 0.58652, 0.58658, 0.5866, 0.58656, 0.58651, 0.58641, 0.58628, 0.58611, 0.58591, 0.5857, 0.58544, 0.58517, 0.58485, 0.58449, 0.58406, 0.58352, 0.58283, 0.58203, 0.58099, 0.57986, 0.57846, 0.57692, 0.57517, 0.5724, 0.56834, 0.56573, 0.56328, 0.56097, 0.55892, 0.55694, 0.5556, 0.55501, 0.55552, 0.55735, 0.56191, 0.56915, 0.5825, 0.63038, 0.68611, 0.73472, 0.7878, 0.8436, 0.90454, 0.98085, 1.0664, 1.1562, 1.2692, 1.4202, 1.5766]

基于LM386的实验电路设计 高频信号对直流偏置的影响

在1MHz频率下,LM386的输出信号随着输入信号有效值从0.01增加到1.00V的变化情况

对比数据

在不同的频率下,输出的信号在开始的时候都是随着输入信号的幅值增加而上升。但是随着频率超出了LM386的频率范围。输出的信号的幅值在高于一定值之后,反而下降。下降的 原因通过下面的输出直流分量的变化可以看出来。

基于LM386的实验电路设计 高频信号对直流偏置的影响

在四种不同的频率下运放的输出是输入信号的幅度之间的关系

直流分量的变化如下图所示。对于高出LM386截止频率之外的信号,输出直流偏质量随着输入信号的幅值增加而下降。从而影响了输出信号的的动态范围,这也使得输出信号中的交流分量降低了。

基于LM386的实验电路设计 高频信号对直流偏置的影响

对比在四种频率下,随着输入信号的幅值增加所引起的输出直流偏移量的变化

从上面的实验可以看出,频率的高低的确是影响LM386直流偏移量的主要原因。同时输入信号的幅值也会影响到输出直流偏移量。

当栓是信号的有效值低于0.1V的时候,LM386直流偏移量变化不大,这说明初级的整流效果还不明显。当输入信号的幅值增大,输入级的整流效果增加,就带动输出直流偏质量下降。

在不同的输入幅值下扫描频率

(1)输入有效值为0.1Vrms 下图对比了在输入相同的情况下,随着频率的增加输出直流量的变化。

基于LM386的实验电路设计 高频信号对直流偏置的影响

输入0.1Vrms下不同频率对应的输出和直流偏置量的变化

freq=[10000.0, 20000.0, 30000.0, 40000.0, 50000.0, 60000.0, 70000.0, 80000.0, 90000.0, 100000.0, 110000.0, 120000.0, 130000.0, 140000.0, 150000.0, 160000.0, 170000.0, 180000.0, 190000.0, 200000.0, 210000.0, 220000.0, 230000.0, 240000.0, 250000.0, 260000.0, 270000.0, 280000.0, 290000.0, 300000.0, 310000.0, 320000.0, 330000.0, 340000.0, 350000.0, 360000.0, 370000.0, 380000.0, 390000.0, 400000.0, 410000.0, 420000.0, 430000.0, 440000.0, 450000.0, 460000.0, 470000.0, 480000.0, 490000.0, 500000.0, 510000.0, 520000.0, 530000.0, 540000.0, 550000.0, 560000.0, 570000.0, 580000.0, 590000.0, 600000.0, 610000.0, 620000.0, 630000.0, 640000.0, 650000.0, 660000.0, 670000.0, 680000.0, 690000.0, 700000.0, 710000.0, 720000.0, 730000.0, 740000.0, 750000.0, 760000.0, 770000.0, 780000.0, 790000.0, 800000.0, 810000.0, 820000.0, 830000.0, 840000.0, 850000.0, 860000.0, 870000.0, 880000.0, 890000.0, 900000.0, 910000.0, 920000.0, 930000.0, 940000.0, 950000.0, 960000.0, 970000.0, 980000.0, 990000.0, 1000000.0] output=[1.63774118, 1.65188929, 1.66769214, 1.68731398, 1.69982482, 1.68613348, 1.67119479, 1.65377866, 1.63394067, 1.61177054, 1.58723554, 1.56034584, 1.53114025, 1.50026052, 1.46846017, 1.43573369, 1.40215921, 1.36736288, 1.33204128, 1.29502672, 1.25561452, 1.21580463, 1.17990417, 1.14584946, 1.11294757, 1.07947244, 1.04635179, 1.01372758, 0.98037023, 0.94828833, 0.91653015, 0.88622918, 0.85697307, 0.82906326, 0.80247309, 0.77717658, 0.75319758, 0.73031026, 0.70830632, 0.68753934, 0.66725753, 0.64787079, 0.62940286, 0.61177984, 0.59518529, 0.57941417, 0.56457179, 0.55051816, 0.53726325, 0.52475421, 0.51358476, 0.50237275, 0.49180495, 0.48171001, 0.47212554, 0.46300625, 0.45435086, 0.44599126, 0.43800191, 0.43035625, 0.42293636, 0.41572455, 0.40911213, 0.40189193, 0.39537593, 0.38887851, 0.38247762, 0.37618233, 0.36993825, 0.36380499, 0.35773061, 0.3517115, 0.34572523, 0.3398616, 0.33401255, 0.3282196, 0.32253801, 0.31694727, 0.3113988, 0.305884, 0.30057845, 0.29528939, 0.29008502, 0.28495769, 0.27962628, 0.27464224, 0.26982082, 0.26506431, 0.26037876, 0.25576498, 0.25120274, 0.24676386, 0.24238726, 0.23802433, 0.23373516, 0.22954655, 0.22535622, 0.22126627, 0.21718112, 0.21313414] offset=[2.4225, 2.41, 2.3948, 2.375, 2.339, 2.2804, 2.2233, 2.1668, 2.11, 2.0536, 1.9983, 1.9444, 1.8927, 1.844, 1.7982, 1.7556, 1.7172, 1.6813, 1.6487, 1.6164, 1.5856, 1.5578, 1.5355, 1.5169, 1.5004, 1.4832, 1.4666, 1.4506, 1.4335, 1.4179, 1.402, 1.3871, 1.3727, 1.3587, 1.3451, 1.3316, 1.3179, 1.3042, 1.2905, 1.2776, 1.2644, 1.252, 1.2403, 1.2298, 1.2202, 1.2115, 1.2042, 1.1976, 1.1921, 1.1876, 1.1854, 1.1827, 1.1807, 1.1795, 1.1788, 1.1789, 1.1795, 1.1808, 1.1826, 1.1849, 1.1876, 1.1906, 1.195, 1.1977, 1.2017, 1.2058, 1.2103, 1.2146, 1.2192, 1.2238, 1.2286, 1.2333, 1.2381, 1.2428, 1.2477, 1.252, 1.2566, 1.2611, 1.2655, 1.2694, 1.2738, 1.2781, 1.2819, 1.2856, 1.2873, 1.291, 1.2943, 1.2977, 1.3009, 1.304, 1.3071, 1.3101, 1.3131, 1.3157, 1.3183, 1.3211, 1.3234, 1.3259, 1.3283, 1.3303]

基于LM386的实验电路设计 高频信号对直流偏置的影响

输入0.1Vrms下,不同频率对应的LM386直立偏移量的变化

(2) 在0.2Vrms输入频谱对输出的影响

设置输入信号的有效值为0.2V,测试输入信号的频率对于输出信号的幅值、输出直流偏质量的影响。

基于LM386的实验电路设计 高频信号对直流偏置的影响

输入信号的频谱对输出信号和直流偏质量的影响

freq=[10000.0, 20000.0, 30000.0, 40000.0, 50000.0, 60000.0, 70000.0, 80000.0, 90000.0, 100000.0, 110000.0, 120000.0, 130000.0, 140000.0, 150000.0, 160000.0, 170000.0, 180000.0, 190000.0, 200000.0, 210000.0, 220000.0, 230000.0, 240000.0, 250000.0, 260000.0, 270000.0, 280000.0, 290000.0, 300000.0, 310000.0, 320000.0, 330000.0, 340000.0, 350000.0, 360000.0, 370000.0, 380000.0, 390000.0, 400000.0, 410000.0, 420000.0, 430000.0, 440000.0, 450000.0, 460000.0, 470000.0, 480000.0, 490000.0, 500000.0, 510000.0, 520000.0, 530000.0, 540000.0, 550000.0, 560000.0, 570000.0, 580000.0, 590000.0, 600000.0, 610000.0, 620000.0, 630000.0, 640000.0, 650000.0, 660000.0, 670000.0, 680000.0, 690000.0, 700000.0, 710000.0, 720000.0, 730000.0, 740000.0, 750000.0, 760000.0, 770000.0, 780000.0, 790000.0, 800000.0, 810000.0, 820000.0, 830000.0, 840000.0, 850000.0, 860000.0, 870000.0, 880000.0, 890000.0, 900000.0, 910000.0, 920000.0, 930000.0, 940000.0, 950000.0, 960000.0, 970000.0, 980000.0, 990000.0, 1000000.0] output=[1.7845617, 1.7999155, 1.79415121, 1.77942651, 1.76241559, 1.74317445, 1.72183134, 1.69813514, 1.67069023, 1.63924553, 1.60391112, 1.56445123, 1.52058835, 1.47189951, 1.41777434, 1.35760286, 1.28809953, 1.20715597, 1.1221883, 1.03385994, 0.9476603, 0.86305411, 0.7793398, 0.70310306, 0.63333144, 0.5696079, 0.51173138, 0.45963179, 0.41176749, 0.36908179, 0.33021484, 0.29584842, 0.2653447, 0.23829002, 0.21442165, 0.18831572, 0.1713437, 0.15640214, 0.14311272, 0.1317833, 0.12100413, 0.11132412, 0.10242767, 0.09427914, 0.08662906, 0.07947889, 0.07284212, 0.06655995, 0.0607382, 0.05524779, 0.05057495, 0.04584276, 0.04143909, 0.03736629, 0.03368743, 0.03031276, 0.02731976, 0.02463444, 0.02228588, 0.02024985, 0.01849291, 0.01702989, 0.01586451, 0.01480536, 0.0139928, 0.0133235, 0.0127798, 0.01238622, 0.0121186, 0.0119763, 0.01189709, 0.01188893, 0.01189847, 0.01190918, 0.01190611, 0.011905, 0.01186686, 0.01181855, 0.01175189, 0.01165224, 0.01156012, 0.01144186, 0.0113128, 0.01116771, 0.01106314, 0.0109019, 0.01072923, 0.01055672, 0.01037206, 0.01018004, 0.00998909, 0.00979955, 0.00959861, 0.00939977, 0.0092038, 0.00899411, 0.00879955, 0.00859903, 0.00839867, 0.00819945] offset=[2.4257, 2.4047, 2.3499, 2.2889, 2.2274, 2.1658, 2.1039, 2.0414, 1.9792, 1.9172, 1.8545, 1.7909, 1.7262, 1.6603, 1.5929, 1.5232, 1.4519, 1.3802, 1.308, 1.2423, 1.1819, 1.1245, 1.0653, 1.0053, 0.95, 0.90085, 0.85808, 0.82113, 0.7885, 0.76056, 0.73612, 0.71513, 0.6969, 0.68099, 0.66707, 0.65476, 0.64387, 0.63413, 0.62529, 0.61763, 0.61014, 0.60323, 0.59673, 0.59058, 0.58474, 0.57897, 0.57328, 0.56752, 0.56185, 0.55631, 0.55166, 0.54703, 0.54312, 0.53983, 0.53714, 0.53503, 0.53338, 0.5321, 0.5311, 0.53032, 0.52968, 0.52914, 0.52869, 0.52821, 0.52781, 0.52743, 0.52707, 0.52674, 0.52644, 0.52618, 0.52597, 0.52581, 0.5257, 0.52563, 0.5256, 0.52561, 0.52565, 0.5257, 0.52578, 0.52588, 0.52598, 0.52609, 0.52621, 0.52634, 0.52651, 0.52665, 0.52679, 0.52694, 0.52709, 0.52724, 0.52739, 0.52753, 0.52768, 0.52783, 0.52798, 0.52811, 0.52826, 0.52839, 0.52853, 0.52866]

基于LM386的实验电路设计 高频信号对直流偏置的影响

在输入0.2Vrms的情况下,信号的频率对输出和偏移量的影响

将前面两个实验的直流偏移量随着频率的增加而变化的情况绘制在一起。

可以看到当输入信号的幅值增大时,频率的增加会使得直流偏移量的变化更大。

基于LM386的实验电路设计 高频信号对直流偏置的影响

对比在两种输入点好的电压下,输入频谱对于运放直流偏移量的影响
编辑:hfy

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 放大器
    +关注

    关注

    142

    文章

    12416

    浏览量

    209980
  • lm386
    +关注

    关注

    8

    文章

    100

    浏览量

    53584
收藏 人收藏

    评论

    相关推荐

    lm386音频放大电路

    LM386是一款广泛应用于音频放大领域的集成电路,其具有高保真、低失真、低功耗等特点。本文将介绍LM386音频放大电路的基本原理和设计要点。 一、L
    的头像 发表于 12-30 16:36 1252次阅读
    <b class='flag-5'>lm386</b>音频放大<b class='flag-5'>电路</b>图

    高频信号发生器的工作原理

    高频信号发生器是一种能够产生高频信号的仪器,其原理基于振荡器的工作原理。以下是一种常见的高频信号发生器的工作原理。
    的头像 发表于 10-16 14:26 787次阅读

    使用RTS0072B的语音转换器电路

    产生与用户正常声音不同的语音来完成的。 该电路设计项目非常简单,需要很少的外部电子部件。 该电路具有各种语音效果,例如转置语音(更高或更低),放大语音和机器人语音。 正如你在这个项目中所看到的,使用的是9伏直流电源,因为该
    发表于 09-11 16:03

    LM386功放芯片介绍

    一.LM386功放芯片介绍 LM386 是一种音频集成功放,具有自身功耗低、电压增益可调整电源电压范围大、外接元件少和总谐波失真小等优点,广泛应用于录音机和收音机之中。 芯片工作电压为 4-12V
    的头像 发表于 09-11 10:54 2598次阅读
    <b class='flag-5'>LM386</b>功放芯片介绍

    基于LM386的1W放大器电路

    这款 1 瓦放大器非常容易以非常小的尺寸构建,仅使用单个 9V 电池,并且基于放大器 IC 类型 LM386,它能够为数百毫瓦至 8 欧姆负载提供功率,同时仅消耗很少的电流静止时毫安。
    的头像 发表于 08-29 15:34 450次阅读
    基于<b class='flag-5'>LM386</b>的1W放大器<b class='flag-5'>电路</b>图

    LM386语音音频功率放大器电路设计

      使用LM386语音音频功率放大器电路设计用于低压消费类应用,可以设计出具有可变增益和音量控制的非常简单的语音放大器。   该 LM386 语音音频功率放大器电路的增益在内部设置为
    发表于 08-04 17:28

    lm386引脚排列图,lm386音频放大电路图讲解

    集成芯片LM386是一种需要低电平电源(通常是电池)的低功耗音频放大器。它采用8引脚迷你DIP封装。该IC设计用于提供20的电压放大,无需外部附加元件。但是通过添加外部器件,可以将该电压增益提高到200(Vu=200)。
    的头像 发表于 07-24 11:16 1913次阅读
    <b class='flag-5'>lm386</b>引脚排列图,<b class='flag-5'>lm386</b>音频放大<b class='flag-5'>电路</b>图讲解

    LM386振荡器电路图 基于LM386的振荡器电路设计

    LM386是美国国家半导体公司生产的一种小功率音频放大集成电路,采用8脚双列直插式塑料封装,工作电压4V-15V,当电源电压为12V时,在8Ω负载上可获得300mW输出功率。用LM386可以很方便地制作各种振荡器。
    发表于 07-17 14:39 1836次阅读
    <b class='flag-5'>LM386</b>振荡器<b class='flag-5'>电路</b>图 基于<b class='flag-5'>LM386</b>的振荡器<b class='flag-5'>电路设计</b>

    LM386音频功率放大器电路LM386的典型应用电路

    。输入端以地位参考,同时输出端被自动偏置到电源电压的一半,在6V电源电压下,它的静态功耗仅为24mW,使得LM386特别适用于电池供电的场合。
    发表于 07-15 17:35 1.2w次阅读
    <b class='flag-5'>LM386</b>音频功率放大器<b class='flag-5'>电路</b>图 <b class='flag-5'>LM386</b>的典型应用<b class='flag-5'>电路</b>

    LM386简易音频功放电路图 基于LM386功放芯片的音乐播放器设计

    LM386 是一种音频集成功放,具有自身功耗低、电压增益可调整电源电压范围大、外接元件少和总谐波失真小等优点,广泛应用于录音机和收音机之中。
    发表于 07-15 15:40 3209次阅读
    <b class='flag-5'>LM386</b>简易音频功放<b class='flag-5'>电路</b>图 基于<b class='flag-5'>LM386</b>功放芯片的音乐播放器设计

    基于LM386音频功率放大电路的调频电台收听原理

    LM386是一款音频功率放大电路,有很宽的工作电压范围(4~18V),提供大约500mW的输出功率,电压增益在20~200之间。
    发表于 07-10 10:01 1934次阅读
    基于<b class='flag-5'>LM386</b>音频功率放大<b class='flag-5'>电路</b>的调频电台收听原理

    使用LM386的音频放大器电路

    放大器用于增强输入信号的强度,并应在输出中提供信号的放大版本。音频放大器广泛用于立体声或家庭影院系统、迷你扬声器等。构建音频放大器电路的方法有很多种,但没有什么比使用专用音频放大器 IC 构建更有效的了。该
    的头像 发表于 07-02 11:11 2512次阅读
    使用<b class='flag-5'>LM386</b>的音频放大器<b class='flag-5'>电路</b>

    如何在放大器电路中使用LM386

    音频放大器 IC LM386 是一种广为人知的音频放大器,由于其微型尺寸和实惠的成本,用于许多音频电路。本文旨在让您了解 LM386 IC的工作原理以及如何在放大器电路中使用。
    的头像 发表于 07-02 10:39 995次阅读
    如何在放大器<b class='flag-5'>电路</b>中使用<b class='flag-5'>LM386</b>?

    LM386内部电路三极管这么多是不是其放大倍数只有几倍?

    LM386内部电路三极管这么多是不是其放大倍数只有几倍?要用这么多三极管究竟是什么原理?
    发表于 04-28 14:48

    LM386内部电路三极管这么多是不是其放大倍数只有几倍?

    LM386内部电路三极管这么多是不是其放大倍数只有几倍?要用这么多三极管究竟是什么原理?
    发表于 04-28 14:47