0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

NCP13992AB 安森美电流模式的谐振控制器支持双口充电芯片?

lhl545545 来源:与非网 作者: 曹顺程 2020-08-15 10:34 次阅读

2019 年,氮化镓充电器引爆了移动电子设备的快充市场,这个领域热度不断升温,像华为、小米、OPPO、三星、甚至苹果都在进场。但是作为较高应用技术门槛的氮化镓充电器,业界大部分充电器厂商还都处于刚起步阶段。

但是就在这种背景下,倍思却先人一步,推出了全球首款 120W 的氮化镓+碳化硅充电器,作为新型半导体材料的双雄,氮化镓与碳化硅的组合能赋予充电器何种改变?其内部的硬件电路设计又会有怎样的不同?本期硬核拆评就来探寻真相。

倍思这款 120W 的氮化镓+碳化硅充电器搭载两个 USB TYPE-C 接口和一个 USB TYPE-A 接口,TYPE-C 接口适用于笔记本电脑手机快充,单口输出 100W Max,支持 PPS,PD3.0,QC4+等快充协议;TYPE-A 接口适用于手机快充,单口输出 30W Max,支持 QC3.0,SCP,FCP,AFC,PE 等快充协议

拆解

充电器简约精致,输入端外壳和主体机身壳之间采用超声波焊接工艺进行连接封装,不得已带了一些破坏性拆解,拆解完大致样貌就如下图所示。

单从一些细节之处也能看出这个充电器做工用料很良心,比如说散热片,刮掉表层漆可以看到采用的是铜片导热,这在一般的充电器上你是看不到的,铜的导热效果是一般铝片导热的两倍,有助于充气器更快释放热量。

另外充电器内部核心基本采用绝缘导热胶跟导热垫的组合,这对产品本身的可靠性和散热都有比较好的效果,但是对于拆解或者说售后维修就比较惨了,估计这种充电器只换不修。差不多清理了 1 个多小时终于把绝缘导热胶清理干净,下图基本能看清这个充电器的主要硬件方案了。

先看一次侧的输入端,有保险丝,Y 电容,电感,滤波电容,安规电容,EMI 共模电感

另一侧有整流器。

PWM 控制小板,基于安森美电流模式的谐振控制器,这种垂直设计充分利用了空间,有利于小型化的电源方案设计。

小板旁边是 PWM 控制器的供电电容;主板两个变压器,同时变压器上也有导热贴,贴合散热铜片将热量导到外壳上。

另外板子这边还有一个 PWM 控制板,毕竟充电器由两路不同的高功率输出,所以设计的时候也采用了双 PWM 控制电路,这是罕见的,不过由于绝缘导热胶的缘故,我这里并未将它全部扯下。

主板上的输出端,两个是安森美的二次侧同步整流驱动器 NCP4306;然后一边是磁环电感

连接磁环电感另一端的是输出端的接口,2 个 USB TYPE-C 以及一个 USB TYPE-A 输出,三个输出接口均采用小块 PCB 板垂直焊接在主控 PCB 板上。

下图是为了看清楚输出端小板上的器件,把其中一路输出的 USB TYPE-C 接口取下来了。可以看到,这个 PCB 小板上设有充电器二次降压电路,通过这颗智融的 USB TYPE-C 控制芯片(SW3516)配合两颗 MOS 管实现降压输出以及协议识别。

其中输出端两个 USB TYPE-C 接口的固态滤波电容规格一致,均为 25V 470μF;而 USB TYPE-A 接口的滤波电容是 25V 180uF;同样小板上的磁环都用热缩管包裹,保护的很好。

一个滤波安规陶瓷电容 ,主要用于输出端的抗干扰。

再来看下电源板的背面,看到之前未清理过的图就知道,PCB 板背面使用了一大片导热贴,这可以将内部电路产生的热量均匀的传递到铜片上,而后传到外壳上,达到均匀散热、避免局部温过过高的效果。

这边是两个万国半导体的 N 沟道 MOS 管,用于同步整流电路,由背面的安森美整流器驱动。

下图红框,此次电源板的重点,两个纳微电子的氮化镓功率 IC,内置驱动器以及复杂的逻辑控制电路,170mΩ导阻,耐压 650V,支持 2MHz 开关频率,采用 5*6mm QFN 封装,节省面积。

两颗光耦,分别对应不同的反馈电路;

又是纳微半导体氮化镓功率芯片,不过型号是 NV6127,相比 6115 是一款升级产品,导通电阻更小,只有 125 毫欧;而黄色框框中的芯片查不到相关的资料,猜测就是官方所说的碳化硅器件,和 NV6127 氮化镓芯片作为一次侧的开关组合,猜测是实现 100W 功率单个 TYPE-C 接口输出的重要硬件组成部分。

所以,综合来看,倍思这个 120W 氮化镓+碳化硅充电器一次侧采用安森美控制器(NCP13992AB )和纳微半导体 NV6115 氮化镓功率芯片以及同样可能是安森美控制器和一颗不知道具体型号的碳化硅以及纳微半导体 NV6127 氮化镓功率芯片;而二次侧采用安森美同步整流驱动器 NCP4306 搭配万国半导体的 N 沟道 MOS 管进行同步整流;三个输出接口为二次降压设计,两个 USB TYPE-C 接口和一个 USB TYPE-A 接口由两颗智融 USB TYPE-C 控制器SW3516 控制,猜测其中一个 TYPE-C 接口和 TYPE-A 接口共用一颗控制芯片,两颗芯片均为内置同步降压控制器和协议识别,支持功率智能分配。

120W 氮化镓+碳化硅充电器 BOM :

器件型号功能说明

NCP13992AB 安森美电流模式的谐振控制器

GBU808G整流桥

D06P065(丝印)疑似碳化硅器件

NV6127纳微半导体氮化镓功率 IC,125mΩ导阻

NV6115纳微半导体氮化镓功率 IC,170mΩ导阻

JD102MY1滤波安规陶瓷电容

NCP4306安森美同步整流驱动器

CT1019光耦

AON6268万国半导体 N 沟道 MOS

SW3516智融支持 PD 的多快充协议双口充电芯片

总结

看完拆解,我们不得不承认价格与质量确实成正比,作为一个充电器,299 的售价不便宜,但是通过拆解我们能看到其内部的硬实力非常强悍,采用的硬件基本上都是国外半导体商巨头的元器件,这是作为硬件工程师对这个充电器硬件电路方案的认可;

但是回归到消费者层面,299 的价格也过于敏感,作为一个可代替性超强的充电器我觉得不是每个人都愿意去尝鲜体验;

此外正如我标题所说的,这里有一个非常误导人的文字游戏,120W 的充电器,一般人看到这个都会理所当然的认为对单个电子设备的最大充电功率为 120W,但是如果是业内人,都知道 USB PD 功率传输协议 100W 是峰值,说 120W 显然不符合常理,毕竟倍思不像小米,oppo 等有自己的电子产品,有自己的传输协议或者可以讨巧的采用双电芯等方式实现真正的 120W 充电,它这个就是通用型的充电器,能达到最高功率基本走的是 USB PD 协议。所以我当时被这个产品吸引或者说震惊并不是因为什么氮化镓+碳化硅的吸引点,而是单纯的想知道这 120W 是怎么搞出来的?真相不出意外,这个 120W 其是 3 个接口的总功率,或者说是两个 Type-C 接口能达到的总功率,而单个 TYPE-C 口的充电功率 100W 就是封顶。

因此,在这个前提下再来讨论氮化镓+碳化硅的组合是非常有必要的,氮化镓+碳化硅这种组合并不是让你打破最高充电功率的上限,而是在同等功率密度下能做到更小的体积,做到更高的效率。不过,在普通消费电子市场,氮化镓+碳化硅的组合上限也就这样了,能让我们期待的是这种组合在更高功率层面的应用,多高功率?不是在这种几十到 100W 的快充产品,而是在几百 W 到几千 W 的应用,比如工业、汽车、大功率电机驱动应用场景,所以一叶知秋,氮化镓跟碳化硅的组合不鸣则已,一鸣必将惊人。
责任编辑:pj

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 芯片
    +关注

    关注

    446

    文章

    47768

    浏览量

    409062
  • 驱动器
    +关注

    关注

    51

    文章

    7305

    浏览量

    142914
  • 谐振控制器
    +关注

    关注

    1

    文章

    27

    浏览量

    9097
收藏 人收藏

    评论

    相关推荐

    升压型节锂电池充电控制集成电路-FS5082

    概述: FS5082是一款工作于3 .0V到6 .5V的PFM升压型节锂电池充电控制集成电路。FS5082 采用恒流和恒压模式(Quasi-CVTM)对电池进行充电管理, 内部集成
    发表于 03-23 22:29

    安森美全新推出的EliteSiC功率集成模块,可破解电动汽车充电难题

    安森美(onsemi)全新推出的EliteSiC功率集成模块,可为电动汽车直流超快速充电桩提供双向充电功能。
    的头像 发表于 03-21 09:59 570次阅读

    LLC拓扑结构设计要点

    市面上经常可以看到的NCP1399以及NCP13992系列就是安森美(onsemi)LLC拓扑结构控制芯片家族的代表成员。
    的头像 发表于 01-24 10:15 752次阅读
    LLC拓扑结构设计要点

    安森美2023年在工业领域的成就

    前不久,我们分享了安森美(onsemi)2023年度精选汽车方案。在2023年,安森美还发布了多项全新工业产品和解决方案,使我们能够不断将创新和愿景付诸实践。我们的持续创新也获得了电力电子行业的认可。今天将为大家盘点安森美202
    的头像 发表于 01-12 09:39 292次阅读

    安森美颁奖,展现安富利新领域新价值

    近日,安森美2023 China EPS Training Certification会议现场, 安富利安森美团队荣获由安森美授予的“Emerging Power and Sensing
    的头像 发表于 12-27 17:10 217次阅读
    获<b class='flag-5'>安森美</b>颁奖,展现安富利新领域新价值

    PL7501CL 5V输入升压型节锂电池充电管理芯片

    概要 PL7501CL 是一款 3.6V-5.5V 输入,1A 输出,节锂电池/锂离子电池充电的异步升压充电控制器。具有完善的充电保护功能。针对不同的应用场合,
    发表于 11-04 14:57

    PL7501C 5V输入升压型节锂电池充电管理芯片

    概要 PL7501C 是一款 3.6V-5.5V 输入,1A 输出,节锂电池/锂离子电池充电的异步升压 充电控制器。具有完善的充电保护功能。针对不同的应用场合,
    发表于 11-04 12:12

    基于NCP2830的1w音频放大器电路设计

      该1w音频放大器电路采用安森美半导体制造的NCP2830音频IC设计。   该音频功率放大器IC专为便携式通信设备应用而设计,几乎不需要外部电子元件。   NCP2830能够在1欧姆负载下提供
    发表于 08-01 17:21

    高效智能电源标杆,安森美3kW EliteSiC电源设计参考

    点击蓝字 关注我们 无论是汽车的电动化转型,还是光伏、储能等新兴市场的发展,都有赖于智能电源技术的不断创新。 安森美(onsemi) 使用图腾柱无桥控制器 NCP1681 和LLC控制器
    的头像 发表于 07-31 19:15 618次阅读
    高效智能电源标杆,<b class='flag-5'>安森美</b>3kW EliteSiC电源设计参考

    力源信息与安森美设立应用联合实验室

    2023年6月13日,力源信息与安森美(onsemi)应用联合实验室揭牌成立。力源信息董事长兼总经理赵马克先生、力源信息副总经理兼销售及市场总监陈福鸿先生、安森美全球销售执行副总裁MikeBalow
    的头像 发表于 07-31 18:02 768次阅读
    力源信息与<b class='flag-5'>安森美</b>设立应用联合实验室

    贸泽电子备货安森美NCN26010以太网控制器 减少布线和成本

    ) NCN26010工业以太网控制器。这款新型10BASE-T1S以太网控制器设计用于为工业环境提供可靠的多点通信。   安森美NCN26010是一款10Mb/s、符合IEEE 802.3cg标准的器件,包含
    发表于 07-03 17:29 425次阅读
    贸泽电子备货<b class='flag-5'>安森美</b>NCN26010以太网<b class='flag-5'>控制器</b> 减少布线和成本

    A+C全协议快充同步降压芯片SW3562

    ,搭配使用硅MOS或氮化镓开关管,电感电容等,即可实现140W大功率输出。内置的降压控制器开关频率为125KHz,支持PFM/PWM模式运行以优化转换效率。 SW3562均内置输出线损补偿,
    发表于 05-25 14:26

    安森美与Kempower就电动汽车充电桩达成战略协议

    MOSFET 和 二极管 ,用于可扩展的电动汽车(EV)充电桩。双方此项合作使得Kempower能采用包括安森美EliteSiC产品在内的各种功率半导体技术,开发电动汽车充电方案套件。这些器件将用于 有源
    的头像 发表于 05-17 12:15 274次阅读
    <b class='flag-5'>安森美</b>与Kempower就电动汽车<b class='flag-5'>充电</b>桩达成战略协议

    安森美和上能电气推出基于EliteSiC公用事业级组串式逆变器

    安森美帮助我们解决了最具挑战性的技术问题,如系统设计、仿真、热分析和控制算法等。我们采用安森美高能效的EliteSiC产品,能够根据客户的特定需求开发并实施尖端前沿的可再生能源方案。此外,
    的头像 发表于 05-16 15:24 759次阅读

    安森美半导体NCP1910高性能CCM PFC及LLC组合控制器

    安森美半导体NCP1910高性能CCMPFC及LLC组合控制器.·第一步-设计PFC段·第二步-设计LLC段·第三步-信号交换部分(handshaking):-BO电平-在此Vbuk电平LLC
    发表于 05-08 09:17 0次下载