0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

科学家开发袖珍型粒子加速器,投射超过光速99.99%超短电子束的激光

如意 来源:携手健康网 作者:携手健康网 2020-08-13 17:39 次阅读

科学家已经成功开发了一种袖珍型粒子加速器,能够以超过光速99.99%的速度投射超短电子束的激光。为了达到这个结果,研究人员不得不使用特殊设计的金属结构,并排以比人的头发还要薄的石英层,以减慢光线的速度以适应电子的速度。

这种巨大的飞跃同时提供了在少于10飞秒(0.000 000 000 000 01秒,或者花费很短的时间行进1/100毫米)的时间范围内测量和操纵粒子束的能力。这将使他们能够创建原子运动的频闪照片。

这次成功的演示为开发高能,高电荷,高质量太赫兹(THz)驱动的加速器铺平了道路,该加速器有望更便宜,更紧凑。减小加速器技术的尺寸和成本,将使这些令人难以置信的机器向更广泛的应用领域开放。

粒子加速器广泛应用于粒子物理学的基础研究,材料表征,医院的放射疗法中,用于治疗癌症患者,用于医学成像的放射性同位素生产以及货物安全检查。但是,支持这些机器的基本技术(射频振荡器)是在第二次世界大战期间为雷达开发的。

在今天发表在《自然光子学》上的一项新研究中,一个由学者组成的合作团队表明,他们独特的解决方案是使用激光产生太赫兹频率的光脉冲。太赫兹是介于红外(用于电视遥控器)和微波(用于微波炉)之间的电磁频谱区域。激光产生的太赫兹辐射存在于理想的毫米级波长范围内,使结构的制造更为简单,但最重要的是提供了半周期长度,该周期长度非常适合于加速带有高电荷水平的整个电子束。

曼彻斯特大学的论文的主要作者Morgan Hibberd博士说:“主要挑战是使加速的太赫兹场的速度与几乎光速的电子束速度相匹配,同时还要防止固有的较低的电子束速度。太赫兹脉冲包络线从我们的加速结构中传播,大大降低了驱动场和电子相互作用的长度。”

“我们通过开发独特的太赫兹源克服了这个问题,该源产生的长脉冲仅包含一个窄范围的频率,从而显着增强了相互作用。我们的下一个里程碑是在保持光束质量的同时展示更高的能量增益。我们希望这将通过以下方式实现已进行改进以提高我们的太赫兹源能量,”。

兰卡斯特大学的史蒂芬·贾米森教授(Steven Jamison)是该计划的联合负责人,他解释说:“用太赫兹频率的类激光脉冲对相对论光束进行受控加速,是开发新的粒子加速器方法的里程碑。在使用电磁频率高一百倍的情况下与传统的粒子加速器相比,飞秒时间尺度上的粒子束控制有了革命性的进步。”

“通过对以光速99.99%传播的粒子进行太赫兹加速度的演示,我们已经确认了将太赫兹加速度缩放为高度相对论能量的途径。”

尽管研究人员注视着他们的概念在用多米长的设备代替多公里规模的研究加速器(例如欧洲3公里长的汉堡X射线源)方面的长期作用,但他们希望立即产生影响属于放射治疗和材料表征领域。

曼彻斯特大学物理高级讲师Darren Graham博士说:“没有Cockcroft研究所提供的独特的协作环境,实现这一里程碑是不可能的。Cockcroft研究院帮助汇集了来自兰开斯特大学的科学家和工程师,曼彻斯特大学和STFC的Daresbury实验室工作人员。”

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 激光
    +关注

    关注

    19

    文章

    2707

    浏览量

    63404
  • 加速器
    +关注

    关注

    2

    文章

    723

    浏览量

    36435
  • 粒子
    +关注

    关注

    0

    文章

    43

    浏览量

    12583
收藏 人收藏

    评论

    相关推荐

    回旋加速器原理 回旋加速器的影响因素

    回旋加速器(Cyclotron)是一种用于加速带电粒子的可再生粒子加速器。它的工作原理基于带电粒子
    的头像 发表于 01-30 10:02 752次阅读

    回旋加速器粒子的最大动能与什么有关

    回旋加速器是一种用于加速粒子的装置,通过不断变化的磁场和电场来不断加速粒子,使其达到极高的速度和能量。
    的头像 发表于 01-18 10:42 784次阅读

    Wakefield激光加速器 - 能量里程碑

    由The University of Texas at Austin物理学副教授比约恩·“曼努埃尔”·赫格利希(Bjorn “Manuel” Hegelich)领导的国际研究小组最近展示了一种长度不到20米的小型粒子加速器,该加速器
    的头像 发表于 01-14 09:38 381次阅读
    Wakefield<b class='flag-5'>激光</b><b class='flag-5'>加速器</b> - 能量里程碑

    粒子加速器加速原理是啥呢?

    粒子加速器加速原理是啥呢? 粒子加速器是一种重要的实验设备,用于研究粒子物理学、核物理学等领域
    的头像 发表于 12-18 13:52 711次阅读

    电子束加工与离子束加工工艺比较

    电子束加工(Electron Beam Machining 简称EBM)起源于德国。1948年德国科学家斯特格瓦发明了第一台电子束加工设备。它是一种利用高能量密度的电子束对材料进行工艺
    的头像 发表于 12-07 11:31 359次阅读
    <b class='flag-5'>电子束</b>加工与离子束加工工艺比较

    21489的IIR加速器滤波参数设置如何对应加速器的滤波参数?

    目前在用21489内部的IIR加速器去做一个低通滤波,在例程的基础上修改参数。通过平板的fda 工具工具去设计参数,但是设计出来的参数不知道如何对应加速器的滤波参数,手册里也看得不是很明白。 设计的参数如下: 请问
    发表于 11-30 08:11

    芯片大小的电子加速器或将考虑到皮肤癌症治疗应用

    粒子加速器的大小不一,有的可以装在实验室里,有的则需要占据几公里甚至几十公里的空间。然而,一项新的研究发现,现在科学家们正在更仔细地研究芯片大小的电子加速器。该技术的近期潜在应用包括用
    的头像 发表于 10-31 09:44 255次阅读

    一个微型的粒子加速器

    粒子加速器是一种利用电场和磁场来加速带电粒子,如电子、质子或离子,使其达到非常高的能量的装置。它们在科学
    的头像 发表于 10-31 09:31 441次阅读

    Rapanda流加速器-实时流式FPGA加速器解决方案

    电子发烧友网站提供《Rapanda流加速器-实时流式FPGA加速器解决方案.pdf》资料免费下载
    发表于 09-13 10:17 0次下载
    Rapanda流<b class='flag-5'>加速器</b>-实时流式FPGA<b class='flag-5'>加速器</b>解决方案

    华为辟谣3.2万名科学家移籍

    华为辟谣3.2万名科学家移籍 对于近期网络传言的华为3.2万名科学家移籍华为方面表示,造谣者毫无根据、无中生有。 华为辟谣3.2万名科学家移籍以及其他的一些网络传言,比如“华为孟晚舟宣布23万亿
    的头像 发表于 08-22 16:51 947次阅读
    华为辟谣3.2万名<b class='flag-5'>科学家</b>移籍

    华秋硬创联合安创加速器加速和创新赋能技术驱动创业者

    参赛项目提供中国电子产业资源专属支持: 1、总决赛前3名获奖项目获得优先入选安创成长营的机会; 2、基于安创加速器的属性,通过整合上下游产业链资源,按各自需求为总决赛前5名获奖项目,对接相应资源,实现
    发表于 08-18 14:37

    中图仪器亮相全国粒子加速器准直安装会议

    7月19-20日,第八届全国粒子加速器准直安装及机械设计学术研讨会在宁夏银川顺利举行,业界学者专家和从业人员齐聚一堂,展示技术、分享成果、应对挑战、合作共进。中图仪器作为国内专业、全面的精密尺寸测量
    的头像 发表于 07-31 22:39 313次阅读
    中图仪器亮相全国<b class='flag-5'>粒子</b><b class='flag-5'>加速器</b>准直安装会议

    高压放大器在粒子加速器领域中的应用

    高压放大器在粒子加速器领域中扮演着重要的角色。粒子加速器可以用来研究物质中微观世界的性质,包括基本粒子的结构和相互作用等。
    的头像 发表于 07-12 14:48 276次阅读
    高压放大器在<b class='flag-5'>粒子</b><b class='flag-5'>加速器</b>领域中的应用

    踏歌智行创始人、首席科学家余贵珍教授登榜“2023科创家”

    “一群跨越了科学与商业边界的人”这是科创媒体36氪对科创企业家的定义。近日, 踏歌智行创始人、首席科学家余贵珍教授从全赛道中脱颖而出, 登榜首届“2023科创家”榜单。此次共有15位教授荣登榜单
    的头像 发表于 06-16 19:15 2154次阅读
    踏歌智行创始人、首席<b class='flag-5'>科学家</b>余贵珍教授登榜“2023科创家”

    科学家使用激光重建扭曲超导材料简析

    芝加哥大学和山西大学的科学家已经创造了一种使用激光来“模拟”一种材料的方法,物理学家多年来一直对其潜在的技术应用垂涎三尺。
    的头像 发表于 03-29 14:01 658次阅读