0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

世界首个3D人工眼球究竟是如何做到与人类生物眼的视网膜媲美?

lhl545545 来源:枫中漫步人 作者:枫中漫步人 2020-08-05 14:49 次阅读

近日,香港科技大学范智勇教授在《Nature》杂志上发表了一篇论文,设计出世界首个3D人工眼球,预计可以在五年之内让全世界上百万人重获光明。这个世界首个3D人工眼球究竟是如何做到生物眼的功能的呢?

人工眼球的成相关键是人工视网膜的制作。人类的生物眼能够看清物体是源于视网膜视场宽、分辨率高和对光的高敏感性,每平方厘米有1000 万个感光细胞。而要人工制作一个可以和人类生物眼的视网膜媲美的人工视网膜,需要用微加工工艺把大量的纳米传感器集成到一个基板上,而且要把这种平面刚性基板弯曲成曲面。但如果按照以前的工艺,需要预留折叠所需的空间,因此将大大限制基板上纳米传感器的密度,就无法实现和人类生物眼视网膜一样高的分辨率。

对于这个难点,香港科技大学范智勇教授提出了一种新的方案:在半球形的氧化铝上集成紧密排布的钙钛矿光敏纳米传感器。这种钙钛矿是很具有潜力的太阳能电池材料。并且他提出用由液态金属制成的传导线将人工视网膜上的光血信号传导出来。通过这种新工艺制作的人工视网膜,其纳米传感器密度可以达到4.6×10^8cm^2,高于人类生物眼的视网膜上感光细胞密度10^7cm^2。

不过,这个世界首个3D人工眼球也并非没有缺陷。除了生产成本比较高,很难大规模使用之外,上面集成的纳米光电传感器像素还比较低,每个纳米光电传感器的像素只有100,其光检测区域只有 2mm。同时,目前在人工视网膜上使用的液态金属信号传导线的直径约为700微米,因此只能实现每3-4个传感器连接一根液态金属导线,但理想状态下液态金属导线的直径应该与纳米线的直径(约几微米)相当,这样才能做到每个传感器连接一根导线,实现更高的分辨率。因此,如何减少液态金属线的直径未来3D人工眼球成相质量提升的最大瓶颈。

虽然世界首个3D人工眼球还要不完美的地方需要改进,但这项技术将是一个重大突破。该人工眼球已经进入动物实验和临床试验,预计五年内就可以投入使用。
责任编辑:pj

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 太阳能电池
    +关注

    关注

    22

    文章

    1089

    浏览量

    68695
  • 光电传感器
    +关注

    关注

    9

    文章

    613

    浏览量

    41485
  • 3D
    3D
    +关注

    关注

    9

    文章

    2752

    浏览量

    106427
收藏 人收藏

    评论

    相关推荐

    STM32擦除后数据究竟是0x00还是0xff ?

    STM32擦除后数据究竟是0x00还是0xff ,百度查了许多发现大多数都是0xff的多,都说SD卡(TF)储存介质是Flash 所以擦除后为0xff,但是我遇到了读出来的数据是0x00的情况,为什么呢
    发表于 04-18 07:59

    MOSFET的栅源振荡究竟是怎么来的?栅源振荡的危害什么?如何抑制

    MOSFET的栅源振荡究竟是怎么来的呢?栅源振荡的危害什么?如何抑制或缓解栅源振荡的现象呢? MOSFET(金属-氧化物-半导体场效应晶体管)的栅源振荡是指在工作过程中,出现的栅极与源极之间产生
    的头像 发表于 03-27 15:33 423次阅读

    云塔科技发布世界首个LB/MB/HB/UHB四工器

    云塔科技(安努奇)发布世界首个LB/MB/HB/UHB四工器,基于云塔自主知识产权的SPD技术,其芯片制程工艺实现100%国产化。
    的头像 发表于 03-11 11:33 290次阅读

    吸尘器究竟是如何替你“吃灰”的【其利天下技术】

    如今,吸尘器已成为大多数人居家必备的小家电产品,那么说起吸尘器,你对吸尘器有了解多少呢?不知道大家知不知道它的原理是什么?今天我们就来说一说吸尘器究竟是如何替你“吃灰”的。
    的头像 发表于 03-07 21:17 541次阅读
    吸尘器<b class='flag-5'>究竟是</b>如何替你“吃灰”的【其利天下技术】

    “其貌不扬”的共模电感究竟是如何做到抗干扰的呢?

    “其貌不扬”的共模电感究竟是如何做到抗干扰的呢? 共模电感是一种用于滤除电子设备中的共模噪声的重要元件,其主要作用是提供阻抗来滤除共模干扰信号。尽管外观看起来“其貌不扬”,但共模电感通过其特殊
    的头像 发表于 01-11 16:27 200次阅读

    同步电机的转数同步究竟是与什么同步啊?

    同步电机的转数同步究竟是与什么同步啊? 所有的同步电机的转数都一样吗?还是与电机的极对数有关系呢?
    发表于 12-19 06:44

    一体成型贴片电感在使用中发热究竟是否会影响运行

    电子发烧友网站提供《一体成型贴片电感在使用中发热究竟是否会影响运行.docx》资料免费下载
    发表于 11-13 16:28 1次下载

    OSPF究竟是如何规避路由环路的呢?

    OSPF究竟是如何规避路由环路的呢? OSPF(开放式最短路径优先)是一种内部网关协议(IGP),用于在一个单一的自治系统(AS)内进行路由选择,它是一种链路状态协议(LSP)。在OSPF中,路由器
    的头像 发表于 11-06 11:10 961次阅读

    2023数字视网膜技术创新大讲堂:深开鸿探索智慧城市应用实践之路

    10月25日,2023数字视网膜技术创新大讲堂在深圳拉开帷幕。活动分为上午的“数字视网膜技术创新大讲堂
    的头像 发表于 10-26 08:34 555次阅读
    2023数字<b class='flag-5'>视网膜</b>技术创新大讲堂:深开鸿探索智慧城市应用实践之路

    开关电源炸机究竟是什么原因呢

    电源工程师最怕什么?炸机!炸机的状况总会成为他们心里说不出的“痛”,里面昂贵的元器件如果出现炸机状况,那么在设计过程中的成本就会大幅提升。那么问题来了,开关电源炸机究竟是什么原因呢?炸机的原因有很多
    的头像 发表于 09-05 08:10 818次阅读
    开关电源炸机<b class='flag-5'>究竟是</b>什么原因呢

    人工智能是否能超越人类智能?人类智能与人工智能的区别 人工智能带来的真正挑战

    人工智能的与人类智能关系的探讨在当下十分热门,我们对人工智能是否可能取代人类这个话题投入了巨大的好奇。在未来,人工智能怎样能接近
    发表于 08-04 11:39 781次阅读

    SVPWM调制波的数学表达究竟是怎样的呢?

    SVPWM可以通过载波比较的方法实现开关控制信号输出。那SVPWM的调制波的数学表达究竟是怎样的呢?答案是SVPWM实质是一种对在三相正弦波中注入了零序分量的调制波进行规则采样的一种变形 SPWM。
    发表于 07-10 17:16 958次阅读
    SVPWM调制波的数学表达<b class='flag-5'>究竟是</b>怎样的呢?

    AI 人工智能的未来在哪?

    人工智能、AI智能大模型已经孵化;繁衍过程将突飞猛进,ChatGPT已经上线。 世界首富马斯克认为AI对人类是一种威胁;谷歌前CEO施密特认为AI和机器学习对人类有很大益处。 每个国家
    发表于 06-27 10:48

    行业资讯 | Sonam Wangchuk谈论世界首个山顶LiFi激光5G互联网

    Sonam Wangchuk谈论世界首个山顶LiFi激光5G互联网
    的头像 发表于 05-11 10:20 321次阅读

    请问NTC热敏电阻的B值究竟是什么东西呢?

    请问NTC热敏电阻的B值究竟是什么东西呢?
    发表于 04-23 10:29