0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

3GPP宣布完成5G标准第二版规范R16

Qorvo半导体 来源:Qorvo半导体 2020-08-03 14:57 次阅读

日前,3GPP 宣布完成 5G 标准第二版规范 R16。

那 R16 究竟讲了些什么?

考虑向垂直行业扩展是 R16 的重头戏,本文将 R16 主要功能分为“向垂直行业扩展”和“功能增强”两大类进行介绍。

向垂直行业扩展

5G + TSN

为了扩大潜在的工业互联网用例,比如工厂自动化、电网配电自动化等,R16 支持 5G 与 TSN(Time Sensitive Networking,时间敏感网络)集成。

什么是 TSN?

传统以太网技术只能实现“尽力而为”的通信,无法满足工业制造应用的高可靠、低时延需求,因此,面向工业自动化需将传统“尽力而为”的以太网升级为可提供“确定性”服务。

同时,现有的工业协议众多,彼此孤立,各种协议使用不同的“语言”,一方面给实时通信带来了难度,另一方面难以实现统一集成,增加了维护和运营成本。

在这样的背景下,TSN 应运而生,它由 IEEE 定义标准,可基于标准以太网技术提供确定性服务,并提供标准化统一的、经济的解决方案。

5G + TSN,即 5G 系统与 TSN 网络集成,基于 5G uRLLC 的低时延高可靠能力,满足 TSN 架构的四大严苛的功能需求:时间同步、低时延传输、高可靠性和资源管理。5G 与 TSN 融合后,可通过 5G NR 无线替代工厂内的有线网络,让工业生产更加柔性化。

uRLLC 增强

为了支持工业领域的低时延、高可靠通信需求,在 3GPP R15 版本中,主要通过更大的子载波间隔(numerology)、Mini-slots、快速 HARQ-ACK、Pre-scheduling 等技术来降低空口时延,并通过 PDCP 复制传输、增强数据与控制信道的传输系统参数等技术来提升传输可靠性。

R16 版本将通过 PDCCH 监视功能、支持多个 HARQ-ACK、无序 PUSCH 调度、UE 优先级和多路复用等多个功能来进一步增强 uRLLC。

比如在可靠性增强方面,R15 支持两条支路的 PDCP 层分集传输,即数据包在 PDCP 层复制,再通过在两条无线链路上传输相同的数据的方式,来抵御无线环境恶化带来的影响,保障通信链路的可靠性。为了进一步增强可靠性,R16 对 PDCP 复制机制进行了增强,最高可支持 4 路复制数据传输,同时增强了对激活/去激活 PDCP 复制的控制。

非公共网络(NPN)

NPN,Non-Public Network,就是基于 3GPP 5G 系统架构的专用网络,它将 5G 扩展到传统的公共移动网络之外,对于使能垂直行业数字化转型至关重要。

NPN 包括两种部署方式:独立部署和非独立部署,即 SNPN(独立的非公共网络)和 PNI-NPN(公共网络集成 NPN)。

在非独立部署模式下,垂直行业可基于 5G 网络切片技术与运营商共享 RAN、共享核心网控制面,或共享整个端到端 5G 公网(即端到端网络切片)等来建设 5G 专网。

在独立部署模式下,垂直行业独立部署从基站到核心网到云平台的整个 5G 网络,可以与运营商的 5G 公网隔离。这意味着,工厂或园区内的设备信息、控制面信令流量、用户面数据流量等都不会出园区,可满足工业领域严苛的数据安全、低时延和高可靠需求。当然,对于园区内的语音、上网等非生产型业务,也可以通过防火墙与运营商公网互连。

那在独立部署模式下,垂直行业的频谱资源从哪里来呢?可以向运营商租用,也可以从监管机构申请,比如德国和日本就专门为垂直行业分配了专网频段,工业巨头们向政府申请并支付相应的费用就可以使用了。

NR-U

运营商的 5G 公网工作于授权频谱,它是提供广覆盖、高质量 5G 无线服务的基石,但 5G 公网也需要非授权频谱来补充容量,就像今天的 LTEWi-Fi 共存互补一样。

于是 5G NR-U 来了。

5G NR-U,全称 5G NR in Unlicensed Spectrum,即工作于非授权频谱的 5G NR。它将 5G NR 工作于 5GHz 和 6GHz 的非授权频段。

5G NR-U 包括两种模式:LAA NR-U(授权频谱辅助接入 NR-U)和Stand-alone NR-U(独立 NR-U)。

LAA NR-U 依托于运营商的授权频谱,将运营商的 NR 授权频谱作为锚点来“聚合”非授权频段,以利用未授权频谱资源增强运营商网络容量和性能,尤其适用于一些人群集中的室内场所,比如体育馆和购物中心等。

Stand-alone NR-U 不需要授权频谱做锚点,可完全独立地在非授权频谱上部署单个 5G 接入点或 5G 专网。这和今天企业自建 Wi-Fi 网络的模式一样,只不过使用的是 5G NR 技术。

5G LAN

5G 局域网支持在一组接入终端间构建二层转发网络,并通过 5G SMF 与 UPF 的交互实现终端组内数据交换和用户面路径选择。5G LAN 提供了组管理服务,使第三方(AF)可以创建、更新和删除组,以及处理网络中的 5G 虚拟网络(VN)配置数据和组成员 UE 的配置。

5G V2X

众所周知,蜂窝车联网(C-V2X)旨在把车连到网,以及把车与车、车与人、车与道路基础设施连成网,以实现车与外界的信息交换,包括了 V2N(车辆与网络/云)、V2V(车辆与车辆)、V2I(车辆与道路基础设施)和 V2P(车辆与行人)之间的连接性。

V2X 消息可以通过 Uu 接口在基站和 UE 之间传输,也可通过 Sidelink 接口(也称为 PC5)在 UE 之间的直接传输,即设备与设备之间直接通信。

为了将蜂窝网络扩展到汽车行业,3GPP 在 R14 引入了 LTE V2X,随后在 R15 对 LTE V2X 进行了功能增强,包括可在 Sidelink 接口上进行载波聚合、支持 64QAM 调制方式,进一步降低时延等。

进入 5G 时代,3GPP R16 版本正式开始对基于 5G NR 的 V2X 技术进行研究,以通过 5G NR 更低的时延、更高的可靠性、更高的容量来提供更高级的 V2X 服务。

R16 版本的 NR V2X 与 LTE V2X 互补和互通,定义支持 25 个 V2X 高级用例,其中主要包括四大领域:

车辆组队行驶,其中领头的车辆向队列中的其他车辆共享信息,从而允许车队保持较小的车距行驶。

通过扩展的传感器的协作通信,车辆、行人、基础设施单元和V2X应用服务器之间可交换传感器数据和实时视频,从而增强UE对周围环境的感知。

通过交换传感器数据和驾驶意图来实现自动驾驶或半自动驾驶。

支持远程驾驶,可帮助处于危险环境中的车辆进行远程驾驶。

NR定位

5G 时代大量的应用需要精准定位,比如工业 AGV、资产追踪等,尤其是室内精准定位,可卫星定位在室内无法使用,LTE 和 WiFi 定位技术又不精准,为此,5G 在 R16 版本中增加了定位功能,其利用 MIMO 多波束特性,定义了基于蜂窝小区的信号往返时间(RTT)、信号到达时间差(TDOA)、到达角测量法(AoA)、离开角测量法(AoD)等室内定位技术。

通过这些定位技术,对于对定位精度要求更为严格的一些商业用例,至少需达到以下要求:

对于 80% 的 UE,水平定位精度优于 3 米(室内)和 10 米(室外)。

对于 80% 的 UE,垂直定位精度优于 3 米(室内和室外)。

功能增强

2-STEP RACH

RACH,即随机接入信道,它是 5G 终端开机时向 5G 网络发出的第一条消息,因此对其进行优化设计非常重要。

在 R15 版本中,基于竞争的随机接入过程是一个四步过程(如下图)。四步随机接入过程需要在 UE 和基站之间进行两个往返周期,这不仅增加了等待时间,还导致了额外的控制信令开销。

在 R16 版本中,采用了两步随机接入的机制,其将前导preamble(Msg1)和 Scheduled Transmission (Msg3)合并为MsgA,将 Random Access Response(Msg2)和 Contention Resolution 消息(Msg4)合并为 MsgB。

IAB

IAB,Integrated Access and Backhaul for NR,即 5G NR 集成无线接入和回传,其可通过扩展 NR 以支持无线回传来替代光纤回传。

IAB 尤其适用于 5G 毫米波。由于毫米波传输距离短,需要部署密集的微站,意味着需要挖沟架线敷设密集的光纤回传,而 IAB 通过无线回传替代光纤,可以大幅降低部署难度和成本。

在 IAB 技术下,接入链路可以与回传链路使用相同的频段,称为带内工作;也可采用不同的频段,称为带外工作。

移动性增强

在传统 4G 网络和 5G R15 版本中,移动终端从源小区切换到目标小区时,移动终端会在短时间内无法发送或接收数据。具体的讲,移动终端与目标小区建立连接之前通常会释放与源小区的连接,这会导致网络与移动终端之间存在约几十毫秒内的中断。

同时,在 NR 高频段波束赋形中,由于需进行波束扫描,可能会导致切换中断时间比 LTE 更长,且可能导致更多的无线链路故障,从而降低可靠性。

这是个大问题,5G 智能制造、车联网、电网配网自动化等场景要求时延不过几毫秒,且对可靠性要求苛刻。

为了减少切换中断时间和提高可靠性,R16 采用了 Dual Active Protocol Stack (DAPS)技术对 NR 的移动性进行了增强,其允许移动终端在切换时始终保持与源小区连接,直到与目标小区开始进行收发数据为止。也就是说,在切换过程这段极短的时间里,移动终端同时从源小区和目标小区接收和发送数据。

双连接和载波聚合增强

R16 增强了双连接和载波聚合功能,包括通过更早的测量报告减少载波聚合和双连接的建立和激活时间,最小化小区建立和激活所需的信令开销和等待时间,快速恢复 MCG 链路,支持不同 numerologies 的载波聚合小区的跨载波调度等等。

MIMO 增强

R16 增强了波束管理和 CSI 反馈,支持多个传输点(multi-TRP)到单个 UE 的传输,以及多个 UE 天线在上行链路的全功率传输,这些增强功能可提升速率,提升边缘覆盖,减少开销和提升链路可靠性。

UE节能

由于 5G NR 更灵活、带宽更大、速率更高,NR 终端设备比 LTE 更耗电。为了减少终端功耗,R16 引入了一些新的节能功能,比如 Wakeup singal,增强跨时隙调度,自适应 MIMO 层数量,UE 省电辅助信息等。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 3GPP
    +关注

    关注

    4

    文章

    411

    浏览量

    44859
  • 工业互联网
    +关注

    关注

    28

    文章

    4225

    浏览量

    93804
  • 5G标准
    +关注

    关注

    0

    文章

    96

    浏览量

    14416

原文标题:5G R16 标准冻结,究竟讲了些什么?

文章出处:【微信号:Qorvo_Inc,微信公众号:Qorvo半导体】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    美格智能联合罗德与施瓦茨完成5G RedCap模组SRM813Q验证,推动5G轻量化全面商用

    性能优异,已全面具备商用能力。 测试中使用的美格智能5G RedCap模组SRM813Q,基于领先的骁龙®X35 5G平台研发设计,符合3GPP R17
    发表于 02-27 11:31

    是德科技成功完成Autotalks 5G新空口车联网系统级芯片验证

    (SoC)进行验证,确保其符合 3GPP 5G 新空口(NR)第 16 版(Rel-16)侧链标准的物理层
    的头像 发表于 02-26 14:20 196次阅读

    3GPP与苹果为6G做好准备,他们都在做什么?

    标准组织3GPP和苹果都透露了关于6G的计划。3GPP宣布将与多个组织合作制定一系列6G规范,包括ARIB、ATIS、CCSA、ETSI、T
    的头像 发表于 12-05 17:10 709次阅读

    3GPP到底是个什么组织 3gpp定义的通信技术标准有哪些

     3GPP的主要成果是各种移动通信标准,如GSM(Global System for Mobile Communications)、UMTS(Universal Mobile Telecommunications System)、LTE(Long-Term Evoluti
    的头像 发表于 10-30 17:25 2070次阅读

    才茂5G产品全面支持5G R16标准,赋能5G行业应用加速落地

    R16标准冻结至今,才茂一直关注R16生态链的发展,如今才茂全栈5G产品均已支持3GPPR16所具有的5GLAN、
    的头像 发表于 06-21 17:09 306次阅读
    才茂<b class='flag-5'>5G</b>产品全面支持<b class='flag-5'>5G</b> <b class='flag-5'>R16</b><b class='flag-5'>标准</b>,赋能<b class='flag-5'>5G</b>行业应用加速落地

    5G NR RACH Preamble类型: Long 和Short Preambles

    一共定义了5种不同格式的前导码(前导码格式0~4),其格式如图所示:   在5G NR中,一共支持13种前导码格式,即格式0、格式1、格式2、格式3、格式A1、格式A2、格式A3、格
    发表于 05-10 17:49

    中国信通院公布 5G 标准必要专利全球最新排名:华为第一、小米首次进入前十

    自2017年启动5G标准制定工作以来,3GPP已于2022年6月完成5G标准第一阶段的制定工作。
    发表于 05-10 10:39

    5G NR RRC协议解析

    3GPP接入的PDU会话而产生。   ue-Identity:用户身份识别   5G-S-TMSI或I-RNTI。   如果是AMF触发的寻呼消息,ue-Identity=5G
    发表于 05-08 15:53

    5G NR RRC协议之NR系统消息解析

    是什么?   以下是定义为5G 3GPP版本15的一部分的系统信息列表。   主信息块(MIB):提供SFN、SCS、SIB1 PDCCH资源、小区禁止信息   系统信息块1(SIB1):小区选择信息
    发表于 05-06 12:40

    5G NR信号的解调分析

    5G NR信号有足够的理解。   本文主要整理了5G NR 信号解调分析中关键参数的设置,包括这些参数在3GPP物理层协议中的定义,为什么这些参数会影响解调,这些参数设置不合理会出现什么异常结果等
    发表于 05-06 11:49

    5G是如何实现更高精度的定位呢?

    问题发挥更强的赋能和带动作用。   那么,5G是如何实现更高精度的定位呢?3gpp面向5G新的网络架构,提出了下图所示的5G定位架构图:      总体上来看,
    发表于 05-05 10:53

    5G毫米波有哪些优势?

    。   5G毫米波面临的第二个挑战是终端移动管理问题。由于高频信号传播特点,5G毫米波小区覆盖半径通常较小,终端在移动状态下由于小区切换较频繁而易于出现数据传输中断。3GPP
    发表于 05-05 10:49

    5G干扰有哪几种类型?

      第一类是同频干扰,即5G频率和卫星频率完全重合,地面5G信号比微弱的卫星信号功率大数千倍,对卫星信号造成毁灭性打击。   第二类是带外杂散干扰,部分5G基站存在质量问题,发射出了工
    发表于 05-05 10:46

    如何计算5G下行峰值速率?

    呢就是出现在很多LTE资料的的时频资源图,下面就结合该图简单说一下5G峰值速率计算。   、图说NR下行峰值速率计算   频域可用资源      5G NR中数据信道基本调度单位PRB定义为12个子
    发表于 05-05 10:05

    哪些毫米波频率会被5G采用呢?

    (ITU)和3GPP在关于5G标准两个研究阶段的计划上已经达成了一致。第一阶段主要研究低于40GHz的频率,致力于在2018年9月之前解决一些更紧迫的商业需求;第二阶段从2018年开始
    发表于 05-05 09:52