0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

高能效的主驱逆变器方案有助解决里程焦虑,提高电动汽车的采用率

安森美 来源:安森美半导体 2020-06-24 15:58 次阅读

全球环保节能法规在推动汽车厂商设计尺寸和重量更小、具有最高电源能效的电动动力总成系统。设计电动动力总成的挑战之一是电池提供直流电,而主驱电机需要交流电。 主驱逆变器是电动动力总成的关键部分,负责将高压电池(350-800V DC)的直流电压转换为三相交流正弦电流的交流电压,进而旋转电感应电机并驱动车辆前进。该模块的性能影响到车辆的整体能效,包括加速和驾驶里程。

安森美半导体提供高能效、稳定可靠且具成本竞争优势的主驱逆变器方案及先进的封装技术,包括分立方案、隔离门极驱动器和创新的VE-Trac系列模块及宽禁带(WBG)方案,以助力增加电动汽车的行驶里程,从而提高电动汽车的采用率。

主驱逆变器方案拓扑

如图1所示,该拓扑包括4个主要功能块:三相逆变级、隔离电源信号处理和调节、通信总线。

图1:主驱逆变器方案拓扑

3相逆变级

3相逆变级的主要器件是逆变器里的每一相里的半桥开关里的高边和低边开关以及相应的高隔离电压门极驱动器,开通和关断那些开关产生3相交流正弦波形使感应电机运行。采用微处理器配置的变频驱动控制算法管理每个逆变器相的高边和低边开关控制

主驱逆变器通常采用400V(HVL1)或800V(HVL2)的高压电池系统,后者在最新设计中日益流行。这些系统要求功率半导体器件的最高工作电压在600V至750V范围内,或900V至1200V范围内,分别对应HVL1或HVL2。要求功率逆变器在每相400A至1000A范围内的电流水平下处理大量功率。为此,一些制造商把分立的封装器件并联,而多数使用功率集成模块(PIM)。

安森美半导体提供分立的IGBT、碳化硅(SiC) MOSFET和创新的VE-Trac系列PIM,以及IGBT和快速恢复二极管的裸芯片,构建主驱逆变器相。所有这些方案都可以与高压门极驱动器接口

安森美半导体的高压门极驱动器技术除了提供用于隔离高压系统与低压系统的电气隔离(galvanic isolation)之外,还有一个关键特性是去饱和(DESAT)检测特性,可防止IGBT短路条件下的“击穿”效应。此外,还具有米勒钳位功能,防止其中一个开关意外导通。且为了增强保护,还具有故障指示功能,以通知系统故障且使能输入。 安森美半导体的经AECQ-101认证的分立IGBT器件,具有出色的热性能和电性能。由于IGBT具有极低的VCE(sat)和门极电荷,因此可将导通和开关损耗降至最低,从而实现高能效运行。 安森美半导体的IGBT与快速反向恢复二极管共同封装,并采用具有竞争优势的场截止沟槽技术进行构建,该技术采用了精细的单元间距设计以创建高功率密度器件,并具有稳定的抗动态闩锁条件的特性。根据电机的功率要求,可以在逆变器每个半桥上的相应的高边和低边开关上并联多个IGBT。

安森美半导体的VE-Trac系列PIM,提供同类最佳的电气和热性能,支持两个主驱逆变器设计平台:VE-Trac Dual和VE-Trac Direct。

VE-Trac Dual结合双面散热(DSC)半桥模块,在紧凑的占位内堆叠和扩展,提供一个小占位的平台方案适用于从80kW到300kW应用。该平台的首个器件是NVG800A75L4DSC,该模块的额定电压750V,额定电流800A,是现有竞争器件容量的两倍。 高效的双面散热确保领先市场的热性能,该模块中没有任何绑定线,使其额定寿命加倍。NVG800A75L4DSC是符合AQG-324认证的模块,含嵌入式智能IGBT,对集成了过流和过温保护功能,提供更快的保护响应时间,因而提供更强固的整体方案。 安森美半导体将在未来数月推出VE-Trac Dual平台内具有更高电压和各种电流水平选项的其它器件,以应对各种新兴应用。

图2:VE-Trac Dual PIM VE-Trac Direct平台提供同类最佳的性能和优势,包括采用直接冷却实现出色的热性能。该平台的首个器件是符合AQG-324认证的NVH820S75L4SPB。 该器件采用six-pack架构封装,已获汽车整车厂商(OEM)和系统供应商广泛认可并采用。这将支持多源供应,最小化布局更改。由于可提供多种功率等级,VE-Trac Direct平台将为不同的汽车平台和应用提供简单、快速的功率调整。 VE-Trac Dual和VE-Trac Direct平台都能够在最高175ºC的结温下连续工作,能在模块化方案的紧凑封装内提供更高的功率。 对于800V电池电动汽车系统,可以将采用D2PAK-7L和TO-247封装的1200V、20mΩ、80mΩ SiC MOSFET插入3个逆变器每个半桥上的高边和低边开关中。SiC MOSFET提供优于硅的开关性能和更高的可靠性,具有低导通电阻和紧凑的芯片尺寸,确保低电容和门极电荷。 这些特性带来了系统优势,包括高能效、快速工作频率、更高的功率密度、更低的电磁干扰(EMI)以及减小占位的便利性。 安森美半导体提供专为主驱逆变器应用而优化的二极管和IGBT裸片,能在175°C的温度下连续运行,具有较低的VCE(sat)和正向电压(VF),具有增强的可靠性和鲁棒性。

信号处理和调节

模拟测量和信号调节模块的主要功能是处理来自逆变器的电流和温度检测信号以及来自感应电机的电流和电机位置检测信号。使用谐振和反激控制器构造的隔离电源可以为微控制器、信号调节和模拟测量电路提供电源。 安森美半导体提供符合AECQ的逻辑组件、比较器运算放大器电流检测放大器,以构建信号处理电路,与微控制器模数转换器单元接口,从而构成闭环系统。

通信总线

安森美半导体提供基于CAN、CAN-FD、LIN、Flexray和系统基础芯片(SBC)的收发器,可确保以超过1 Mbps的数据速率进行可靠定的车载通信,以满足现代车载网络的要求。 此外,安森美半导体还提供AECQ-101认证的通信总线保护器件,结温最大值为175°C,以保护车辆通信线路免受静电放电(ESD)和其他有害瞬态电压事件的影响。这些器件为每条数据线路提供双向保护,为系统设计人员提高系统可靠性并满足严格的EMI要求提供了具成本优势的选择。

评估套件

为便于设计人员在开发主驱逆变器的早期阶段分别评估VE-Trac Dual模块和VE-Trac Direct电源模块的性能,安森美半导体提供VE-Trac Dual评估套件NVG800A75L4DSC-EVK和VE-Trac Direct评估套件NVH820S75L4SPB-EVK,可用作双脉冲测试用以测量关键的开关参数,或用作电机控制的3相逆变器,功率达150kW。

VE-Trac Dual评估套件含三个VE-Trac Dual电源模块,贴装在双侧冷却散热器上,配有6通道门极驱动板、直流母线电容器和用于电机控制的外置霍尔效应电流检测反馈,不含脉宽调制(PWM)控制器。其特性如下:

集成800A,750V第4代场截止(FS4) IGBT/二极管芯片组

汽车级隔离型大电流、高能效IGBT门极驱动器内置电气隔离NCV57000/1

电源模块中的片上电流检测功能实现更快更简单的过流保护(OCP)

在电源模块中集成了片上温度感测功能,从而实现了更快,更接近真正的Tvj过温保护(OTP)

定制设计的双面散热器提供低压降,及出色的热性能

定制的薄膜直流母线电容器,额定值达500V DC,500uF

图3:VE-Trac Dual评估套件 VE-Trac Direct评估套件含一个VE-Trac Direct电源模块,贴装在冷却套中,配有6通道门极驱动器板、直流母线电容器,不含PWM控制器或外部电流检测器。其特性如下:

集成820A, 750V FS4 IGBT/二极管芯片组和直接冷却特性

汽车级隔离型大电流、高能效IGBT门极驱动器内置电气隔离NCV57000/1

薄膜直流母线电容器,额定值达500V DC,500uF

图4:VE-Trac Direct评估套件

产品推荐列表

点击查看大图

总结

设计电动动力总成的挑战之一是电池提供直流电,而主驱电机需要交流电。因此,主驱逆变器是动力总成的关键部分。元器件选择不当或设计不当会导致逆变器能效低或尺寸大(或两者兼而有之),这将不利于车辆行驶更远的里程,必须仔细评估导通损耗和开关损耗,以实现车辆的目标传动系统性能。

安森美半导体提供高能效、强固且具成本竞争优势的主驱逆变器方案及先进的封装技术,包括分立功率器件、隔离门极驱动器和扩展的模块方案,以及宽禁带方案,并持续创新,以解决设计挑战,为迅速增长的主驱逆变器市场提供可扩展性和汽车可靠性,推动电动动力总成的快速发展和采用。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电动汽车
    +关注

    关注

    155

    文章

    11005

    浏览量

    222625
  • 驱动器
    +关注

    关注

    51

    文章

    7244

    浏览量

    142611
  • 逆变器
    +关注

    关注

    269

    文章

    4165

    浏览量

    200966

原文标题:高能效的主驱逆变器方案有助解决里程焦虑,提高电动汽车的采用率

文章出处:【微信号:onsemi-china,微信公众号:安森美】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    电动汽车超级快充技术迅速推进,快速补能解决电量焦虑

    。   但是即便如此,很多新能源汽车车主仍有着挥之不去的焦虑,在电动汽车和智能手机一样普及的今天,用户对电动汽车的续航里程
    的头像 发表于 02-18 00:02 3981次阅读

    意法半导体与致瞻科技合作提升电动汽车夏冬续航里程

    中的压缩机控制器提供意法半导体第三代碳化硅(SiC)MOSFET技术。采用高能效的控制器可为新能源汽车带来诸多益处,以动力电池容量60kWh~90kWh的中型电动汽车为例,续航
    的头像 发表于 01-18 10:04 284次阅读

    增程式电动汽车的定义 增程式电动汽车和插电式混合动力汽车对比

    目前,对增程式电动车的定义有些模糊,在世界范围内尚没有一个严格的定义。如图一所示,我把我们国家以及美国对增程式电动车的定义及六个关键词列了出来:电动汽车、纯电续航里程、延长续航
    的头像 发表于 12-01 09:55 857次阅读
    增程式<b class='flag-5'>电动汽车</b>的定义 增程式<b class='flag-5'>电动汽车</b>和插电式混合动力<b class='flag-5'>汽车</b>对比

    电池管理系统创新如何提高电动汽车采用率

    电子发烧友网站提供《电池管理系统创新如何提高电动汽车采用率.pdf》资料免费下载
    发表于 11-22 09:34 0次下载
    电池管理系统创新如何<b class='flag-5'>提高</b><b class='flag-5'>电动汽车</b><b class='flag-5'>采用率</b>

    提高电动汽车性能的SiC电力电子器件

    电动汽车设计方面,提高续航里程的最有效方法是提高电池电压。
    的头像 发表于 11-09 10:38 736次阅读
    <b class='flag-5'>提高</b><b class='flag-5'>电动汽车</b>性能的SiC电力电子器件

    舍弗勒创新技术助力提升电动汽车续航里程

    舍弗勒的创新技术可提升电动汽车续航里程,或在不牺牲续航里程的前提下提升驾乘舒适性 高效轮毂轴承和变速箱轴承可减少摩擦,从而大幅降低系统能耗 高度集成的智能化热管理组件和系统可将电动汽车
    的头像 发表于 11-05 16:16 666次阅读
    舍弗勒创新技术助力提升<b class='flag-5'>电动汽车</b>续航<b class='flag-5'>里程</b>

    安森美SiC主驱逆变器电动汽车延长5%里程的秘诀

    本文作者:安森美汽车主驱解决方案高级产品线经理JonathanLiao不断增长的消费需求、持续提高的环保意识/环境法规约束,以及越来越丰富的可选方案,都在推动着人们选用
    的头像 发表于 10-21 08:30 398次阅读
    安森美SiC主驱<b class='flag-5'>逆变器</b>让<b class='flag-5'>电动汽车</b>延长5%<b class='flag-5'>里程</b>的秘诀

    SiC主驱逆变器电动汽车延长5%里程的秘诀

    本文作者:安森美汽车主驱解决方案高级产品线经理 Jonathan Liao 不断增长的消费需求、持续提高的环保意识/环境法规约束,以及越来越丰富的可选方案,都在推动着人们选用
    的头像 发表于 10-19 11:05 243次阅读

    基于stm32的电动汽车交流充电桩设计与实现

    要推动电动汽车的产业化,与之配套的电动汽车充电设施必不可少。本课题提出了一种基于STM32处理器STM32F103ZET6的电动汽车交流充电桩设计与实现方案
    发表于 09-21 07:58

    电动汽车电机领域的发展趋势

    电动汽车是实现交通领域零排放的一项前景广阔的全球战略。更严格的排放标准和电池的改进(成本更低、续航里程更长)有助电动汽车的发展。
    的头像 发表于 08-25 10:54 775次阅读
    <b class='flag-5'>电动汽车</b>电机领域的发展趋势

    AMD 助力研华为多功能电动汽车充电系统提供支持

    电动汽车充电的庞大需求。 快速、高效的汽车电池充电站对新一代电动汽车的供电至关重要。此外,电动汽车充电桩的持续普及也有助于消除消费者对续航
    的头像 发表于 08-23 08:10 276次阅读
    AMD 助力研华为多功能<b class='flag-5'>电动汽车</b>充电系统提供支持

    住友电工:将生产节能碳化硅晶圆,可将电动汽车行驶里程延长10%

    与传统硅基半导体相比,碳化硅晶圆具有众多优势,特别是卓越的能源效率,将有助于扩大电动汽车的续航里程。此外,这些晶圆能够在更高的温度下运行,使其非常适合用于逆变器和电源模块等高功率设备。
    的头像 发表于 08-03 16:35 442次阅读

    通过SiC技术电机逆变器实现电动汽车行驶里程拓展的承诺

    目前有两大因素影响着车辆运输和半导体技术的未来。行业正在拥抱令人振奋的新方法,即以清洁的电力驱动我们的汽车,同时重新设计支撑电动汽车(EV)子系统的半导体材料,以最大程度地提高功效比,进而增加
    的头像 发表于 06-16 10:31 563次阅读
    通过SiC技术电机<b class='flag-5'>逆变器</b>实现<b class='flag-5'>电动汽车</b>行驶<b class='flag-5'>里程</b>拓展的承诺

    在相同电池尺寸下增加电动汽车的续航里程–效率

    电动汽车(EV)是移动出行的未来,但消费者大规模采用的最大障碍是里程焦虑和价格。虽然使用更大的电池将是增加续航里程的明显解决
    的头像 发表于 06-08 11:14 563次阅读
    在相同电池尺寸下增加<b class='flag-5'>电动汽车</b>的续航<b class='flag-5'>里程</b>–效率

    电动汽车快充:是“续航里程焦虑”的解药吗

    随着充电基础设施的不断建设、快速充电桩的开发以及高功率密度电池的使用,这种情况都将成为过去。新材料和新技术的采用使得电动汽车电池的容量和功率密度得到了进一步提升,如今的锂离子电池的容量相当于同等大小
    的头像 发表于 05-19 09:32 1044次阅读
    <b class='flag-5'>电动汽车</b>快充:是“续航<b class='flag-5'>里程</b><b class='flag-5'>焦虑</b>”的解药吗