0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

台湾长庚大学最新发表氮化镓5G网络通讯技术

独爱72H 来源:经济日报 作者:经济日报 2020-05-19 15:00 次阅读

(文章来源:经济日报)

长庚大学邱显钦教授团队,近期在研发5G通讯元件及节能氮化镓功率元件方面,成果丰硕;此外,电子系金国生教授接受国家中山科学研究院电子所委托,执行经济部科专计划「具备自测功能的毫米波基地台天线技术开发」,担任计划主持人,带领电子系陈元贺教授、李仲益教授及研究生团队,负责开发5G通讯用毫米波38 GHz阵列天线及基地台天线测试技术,亦有所展现。长庚大学希望各大企业可以投入此前瞻产业,并且有更进一步的扩大技转合作机会。

目前半导体产业的发展已经不是单一方向的研发,必须从原物料、基板、磊晶、制程、模块、应用等多面向的合作,并且积极参加产业研发联盟,目前,长庚大学邱显钦教授团队,在应用于高频/高效率直流转换器的硅基氮化镓新型开关元件,或是针对第五代行动通讯(5G)应用,高频率氮化镓芯片都有相当的研究成果。

邱显钦教授表示,为促进我国新型半导体材料的发展产业,在高功率及高频率应用,氮化镓(GaN)已经是全球最受瞩目的材料之一,其宽能隙、高电子迁移率、高电子饱和速度、及高热稳定等特性为主要优势。宽能隙特性造就其优异的崩溃电压与热稳定,有利于在新世代高压、高功率通讯元件的操作;高电子饱和速度之特点更利于此元件在高频率的卓越表现。

长庚大学高速智能研究中心团队过去3年已经开始InAlN/GaN HEMT on 6-inch SOI 基板的元件制作,该实验室开发的高瓦数功率输出GaN金氧半功率晶体管(闸极宽度2mm),电流增益截止频率也到达了40GHz,28伏特偏压底下操作可以拥有1.6W/mm功率密度,功率附加效率比传统金半接面高5%,在50V偏压时可以达到2W/mm的功率密度输出,加上电场版技术后最高崩溃电压已经超过三百伏特,此外,也成功将元件覆晶于高散热系数的氮化铝与硅基板上,整合于高ESD保护电路之上。

学术界以及业界重要的研究内容,是以如何达到增强型氮化镓场效应晶体管开发与高压DC/DC整流电路实现,该实验室近期开发新型p-GaN Gate E-mode HEMT及Anode recess GaN Schottky Barrier Diode,并利用多循环式湿蚀刻技术,大幅增加两种元件的制造均匀性。相关技术不仅在学术发表外也成功技术转移至6吋硅代工厂进行量产技术落实,甚至结合此两种元件技术也开发出VTH接近于0V的SBD元件。

落实这些晶体管与二极管技术之后,亦基于GaN晶体管元件其高速导通、截止的能力,提高电路的切换频率,进而缩小整体DC/DC converter体积及重量。开发过程也建立及分析GaN晶体管各项特性的评估标准,做为设计上的参考并开发以GaN晶体管为基础的半桥式DC/DC电源转换模块,目前已经成功实现出以GaN为晶体管与二极管的6000Watt与300Watt高速DC/DC升降压转换电路(Freq>1MHz)。

第五代行动通讯(简称5G),由于能够提供高达10 Gbit/s的传输速率,已成为未来行动通讯的主要发展技术之一。5G通讯产业规模之大,各国莫不全力投入开发。天线为5G通讯系统之关键组件,因5G操作频率高达毫米波频段,天线尺寸相对小,且各种高频寄生效应严重,故设计难度颇高。

长庚大学电子系金国生教授接受中山科学研究院电子所委托,执行经济部科专计划「具备自测功能之毫米波基地台天线技术开发」,担任计划主持人,带领电子系陈元贺教授、李仲益教授及研究生团队,负责开发5G通讯用毫米波38 GHz阵列天线及基地台天线测试技术。中科院在5G技术发展上以基地台系统技术为主轴,本计划与中科院密切配合,形成整合型团队,强化台湾地区在5G的技术研究,特别是在发展5G基地台阵列天线技术方面。

此计划所开发的38 GHz阵列天线,具有平面式、高增益、低旁波瓣、可波束扫瞄等功能。藉由设计巴特勒矩阵电路,与8´10贴片阵列天线组合,可达成四波束扫瞄功能,优点是射频与基频电路不需做任何变动,即可赋予系统空间多工的能力,成本较为低廉,且因为是被动式架构,故功耗较小。此外,也提出一种简易型天线自测平台,可在射频端进行天线简易功能测试,提供工程师初步研判天线系统功能是否正常,作为天线模块维修或更换的参考。

阵列天线的馈电网路采用基板集成波导(SIW)结构,基板介质材料采用中科院开发的低介电氮化铝材料,SIW结构利用雷射钻孔及电镀方式填孔,搭配其低损耗毫米波基板先进制程进行阵列天线制作,协助中科院验证其毫米波材料用于5G天线设计的特性。
(责任编辑:fqj)

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 通讯技术
    +关注

    关注

    1

    文章

    87

    浏览量

    13810
  • 5G
    5G
    +关注

    关注

    1340

    文章

    47733

    浏览量

    553097
收藏 人收藏

    评论

    相关推荐

    氮化测试

    氮化
    jf_00834201
    发布于 :2023年07月13日 22:03:24

    有关氮化半导体的常见错误观念

    小得多,因此每块晶圆就可以生产出更多的氮化器件,从而实现可量产、具低成本、成熟、迅速反应和非常易于扩展的供应链。 误解5 :GaN FET和集成电路的价格昂贵 这是关于氮化
    发表于 06-25 14:17

    什么是氮化功率芯片?

    通过SMT封装,GaNFast™ 氮化功率芯片实现氮化器件、驱动、控制和保护集成。这些GaNFast™功率芯片是一种易于使用的“数字输入、电源输出” (digital in, po
    发表于 06-15 16:03

    为什么氮化比硅更好?

    。 在器件层面,根据实际情况而言,归一化导通电阻(RDS(ON))和栅极电荷(QG)乘积得出的优值系数,氮化比硅好 5 倍到 20 倍。通过采用更小的晶体管和更短的电流路径,氮化
    发表于 06-15 15:53

    氮化: 历史与未来

    (86) ,因此在正常体温下,它会在人的手中融化。 又过了65年,氮化首次被人工合成。直到20世纪60年代,制造氮化单晶薄膜的技术才得以
    发表于 06-15 15:50

    为什么氮化(GaN)很重要?

    氮化(GaN)的重要性日益凸显,增加。因为它与传统的硅技术相比,不仅性能优异,应用范围广泛,而且还能有效减少能量损耗和空间的占用。在一些研发和应用中,传统硅器件在能量转换方面,已经达到了它的物理
    发表于 06-15 15:47

    什么是氮化(GaN)?

    氮化,由(原子序数 31)和氮(原子序数 7)结合而来的化合物。它是拥有稳定六边形晶体结构的宽禁带半导体材料。禁带,是指电子从原子核轨道上脱离所需要的能量,氮化
    发表于 06-15 15:41

    氮化功率芯片的优势

    更小:GaNFast™ 功率芯片,可实现比传统硅器件芯片 3 倍的充电速度,其尺寸和重量只有前者的一半,并且在能量节约方面,它最高能节约 40% 的能量。 更快:氮化电源 IC 的集成设计使其非常
    发表于 06-15 15:32

    谁发明了氮化功率芯片?

    虽然低电压氮化功率芯片的学术研究,始于 2009 年左右的香港科技大学,但强大的高压氮化功率芯片平台的量产,则是由成立于 2014 年的
    发表于 06-15 15:28

    什么是氮化功率芯片?

    eMode硅基氮化技术,创造了专有的AllGaN™工艺设计套件(PDK),以实现集成氮化 FET、
    发表于 06-15 14:17

    5G网络的架构(2)#5G技术

    网络通信5G
    未来加油dz
    发布于 :2023年05月10日 23:11:09

    5G网络的架构(1)#5G技术

    网络通信5G
    未来加油dz
    发布于 :2023年05月10日 23:10:39

    5G使用哪种类型的基站天线?

    要求的传输,从而优化了EMF级别。   网络还将设备的功率级别控​​制到最低级别,以完成与网络的令人满意的通信。   5G网络天线站点周围的合规区域大小是多少?   
    发表于 05-05 11:51

    5G毫米波有哪些优势?

    庭和写字楼的网络部署中,5G毫米波可作为中低频基站的回传,或者通过CPE提供宽带服务,实现对高清视频、AR/VR等业务的良好支持。而在工业互联网领域,相关测试表明,即使在复杂的工业环境中,5G毫米波
    发表于 05-05 10:49

    5G网络架构,5G中的SDR和SDN是什么?

    技术网络的融合网络通信,以及与卫星、蜂窝网络、云、数据中心和家庭网关联合的开放通信系统。   5G网络
    发表于 05-05 09:48