0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

非对称凝胶聚合物电解质膜,可促进锂离子传输和均匀沉积

牵手一起梦 来源:苏州纳米技术与纳米仿生 作者:佚名 2020-04-08 14:20 次阅读

具有高理论比容量、低氧化还原电位的金属锂负极,有望助力下一代高能量电池的实现。然而,液态电解液体系中金属锂负极的枝晶问题饱受诟病。枝晶生长不但能够导致锂的不可逆容量损失,还可能引发电池短路乃至爆炸。科学家们对枝晶生长机理进行了广泛研究,其中得到广泛认可的Chazalviel模型指出,枝晶成核时间受到电解质离子浓度、阴/阳离子迁移率和有效电流密度的影响。提高电解质的锂离子迁移率,降低阴离子迁移率,将有效延长成核时间,抑制枝晶生长。

近期,中国科学院苏州纳米技术与纳米仿生研究所从枝晶生长机制出发,设计了一种促进锂离子快速传输和均匀沉积的非对称凝胶聚合物电解质(Asymmetric GPE)膜,用于无枝晶生长的金属锂电池

首先,经分子动力学(MD)模拟结果证明,PVDF分子链上极性单元能以离子-偶极子作用力结合电解质中的PF6-(图1c),而Li+则在体系中表现出更高的扩散系数(图1e)。利用聚合物这种性质,该团队设计了独特的膜结构用于调节电解质离子分布。其中,占主要部分的竖直孔道层,能够缩短内部传输路径,实现离子快速传导;与锂负极接触面的纳米孔层,起到重新分布和均匀化锂离子流的作用。充电过程中,PF6-被束缚在聚合物基体上,而Li+能够快速传导至负极并均匀沉积,从而实现无枝晶金属锂电池。

这种非对称结构的聚合物膜由冷冻铸造结合相转化法制得(图2a)。将PVDF-HFP的DMSO溶液在铜板上刮膜并转移至低温的铜冷却器上,利用温度梯度下溶剂冰晶的成核与定向生长形成独特的非对称结构,并在非溶剂中完成固化。经SEM表征,该膜主体部分呈平行排列的孔道结构,而底层为相对致密的纳米孔结构,上下表面相应呈现多孔和致密的形貌。此非对称PVDF-HFP膜经电解液(1 M LiPF6 in EC/DEC)活化后即得到Asymmetric GPE。与基于多孔膜的Porous GPE相比,Asymmetric GPE具有更高的孔隙率、电解液吸附率,更低的内部曲折度,以及更优秀的力学性能。

经测试,Asymmetric GPE具有与计算结果相符的高锂离子迁移数t+(0.66),明显优于液态电解质(0.34)。同时,独特孔道结构的Asymmetric GPE表现出优异的离子传输性能。20℃下,其离子电导率为3.36 mS cm-1,接近于纯液态电解质,优于Porous GPE和商用Celgard隔膜。Asymmetric GPE优秀的锂离子传导性能将有助于无枝晶锂负极和高性能金属锂电池的实现。

研究人员对金属锂的沉积形貌进行表征。Asymmetric GPE下的锂沉积层致密且平滑,而液态电解质下则出现众多不均匀的锂枝晶(图5a-d)。同时,GPE沉积过程具有更低的成核和稳态电位,意味着优秀的沉积动力学(图5e)。Li|Li对称电池也印证了这一结论(图5f)。在1 mA cm-2,1 mAh cm-2条件下,GPE电池循环过电位更低,稳定循环250小时以上;而液态电池循环60小时后即开始不稳定,200小时后失效。这些结果证明了Asymmetric GPE对锂枝晶生长的有效抑制。

研究人员组装磷酸铁锂(LFP)为正极的金属锂电池,进一步验证了Asymmetric GPE的优异性能。首先,GPE电池具有较低的界面阻抗(图6a),说明电极与电解质更紧密的贴合和更均匀的离子分布。30℃下,GPE电池在0.2 C倍率下表现出156 mAh g-1的高放电比容量,而在0.5 C,1 C和5 C下也具有149, 140和101 mAh g-1比容量,远高于等量电解液的液态电池(图6b)。在2 C循环测试中,GPE电池稳定循环600圈后,平均库伦效率达到99.5%;而液态电池循环300圈后容量便快速衰减,且平均库伦效率只有97.9%(图6c)。LFP|Li电池结果说明,具有快速锂离子传导和抑制锂枝晶功能的Asymmetric GPE,有助于实现金属锂电池保持高库伦效率和稳定循环。

以上研究成果以Asymmetric Gel Polymer Electrolyte with High Lithium Ionic Conductivity for Dendrite-free Lithium Metal Batteries 为题发表在Journal of Materials Chemistry A上(doi.org/10.1039/D0TA01883J)。第一作者为中国科大硕士研究生李麟阁,通讯作者为项目研究员刘美男。

图1.(a)不对称结构Asymmetric GPE以及(b)离子传输示意图。计算模拟(c)PF6-和(d)Li+与PVDF的径向分布函数,(e)离子在PVDF中扩散系数。

图2.(a)非对称聚合物膜制备示意图。(b-d)非对称聚合物膜GPE实物图。

图3. 聚合物膜SEM图像。(a)非对称聚合物膜与(b)多孔膜对比样横截面,(c, d)平行孔道层和(e, f)纳米孔层的截面与表面。

图4. 电解质离子传输性能表征。(a)Asymmetric GPE锂离子迁移数测试,(b)拉曼光谱,(c)离子电导率Arrhenius曲线与(d)离子传输性能。

图5. 电解质对金属锂沉积的影响。(a-d)Asymmetric GPE与Celgard+LE在铜箔表面沉积锂形貌SEM图像,(e)金属锂的沉积电位,(f)Li|Li对称电池循环过电位。

图6. Li|LFP电池测试。Asymmetric GPE与Celgard+LE的(a)电池阻抗测试,(b)倍率性能,(c)长循环性能与库伦效率。

责任编辑:gt

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 锂电池
    +关注

    关注

    256

    文章

    7665

    浏览量

    163354
  • 锂离子
    +关注

    关注

    5

    文章

    520

    浏览量

    37088
收藏 人收藏

    评论

    相关推荐

    请问聚合物电解质是如何进行离子传导的呢?

    在目前的聚合物电解质体系中,高分子聚合物在室温下都有明显的结晶性,这也是室温下固态聚合物电解质的电导率远远低于液态
    的头像 发表于 03-15 14:11 157次阅读
    请问<b class='flag-5'>聚合物</b><b class='flag-5'>电解质</b>是如何进行<b class='flag-5'>离子</b>传导的呢?

    聚合物锂电池是什么 锂离子电池和聚合物锂电池的区别

    聚合物锂电池是什么 锂离子电池和聚合物锂电池的区别  聚合物锂电池是一种新型的锂离子电池,它采用了由聚合
    的头像 发表于 03-07 16:54 309次阅读

    不同类型的电池的电解质都是什么?

    电解质通过促进离子在充电时从阴极到阳极的移动以及在放电时反向的移动,充当使电池导电的催化剂。离子是失去或获得电子的带电原子,电池的电解质由液
    的头像 发表于 02-27 17:42 329次阅读

    锂离子电池和锂聚合物电池的区别在哪

    包括正极、负极、电解质和隔膜。其中,正极常使用锂化合物(如LiCoO2、LiMn2O4、LiFePO4)作为活性材料,负极则采用碳材料(如石墨)。电解质通常为有机液体(如聚碳酸酯)、无机液体(如锂盐溶液)或凝胶态材料。
    的头像 发表于 01-22 17:20 977次阅读

    固态电解质离子传输机理解析

    固态电解质离子的迁移通常是通过离子扩散的方式实现的。离子扩散是指离子从一个位置移动到另一个位置的过程,使得电荷在材料中
    发表于 01-19 15:12 675次阅读
    固态<b class='flag-5'>电解质</b><b class='flag-5'>离子</b><b class='flag-5'>传输</b>机理解析

    锂离子电池电解液有什么作用?

           锂离子电池作为一种便携式储能设备,广泛用于手机,笔记本电脑,相机,电动自行车,电动汽车等领域。其中锂电池电解液是一个不容忽视的方面。毕竟,占电池成本15%的电解质在电池能量密度
    的头像 发表于 12-26 17:05 266次阅读

    分子筛电解质膜助力超长寿命锌离子电池

    水系锌离子电池(AZIBs)具有成本低、不易燃烧的锌金属和水电解质等优点。
    的头像 发表于 12-21 09:27 233次阅读
    分子筛<b class='flag-5'>电解质膜</b>助力超长寿命锌<b class='flag-5'>离子</b>电池

    一种有机-无机非对称固态电解质,实现长循环稳定的高压锂电池

    通过非对称有机-无机复合固态电解质的协同效应,改善了不同阴极(LiFePO4和LiNi0.8Mn0.1Co0.1O2)/锂电池的循环稳定性,显著拓宽了电化学稳定窗口(5.3 V)并大大增强了锂枝晶的抑制。
    的头像 发表于 12-10 09:23 686次阅读
    一种有机-无机<b class='flag-5'>非对称</b>固态<b class='flag-5'>电解质</b>,实现长循环稳定的高压锂电池

    锂离子电池电解液的概念、组成及作用

    从儿童玩具到无绳电动工具,再到电动汽车,由锂离子电池供电的产品,包括 三元锂电池 ,在我们的日常生活中正变得越来越普遍。电池的电解液被认为是最重要的组成部分之一。根据电解液的状态, 锂离子
    的头像 发表于 11-10 10:00 2077次阅读

    PL5353A SOT23-5 单电池锂离子/聚合物电池保护集成电路

    的 ·高精度电压检测 ·低电流消耗 -操作模式: 2.8μA typ。 -断电模式: 1.5μA类型。 ·符合RoHS标准,无铅(Pb) 应用 单电池锂离子电池组 锂聚合物电池组
    发表于 11-07 10:23

    锂金属电池正负离子协同调节功能的两性离子聚合物电解质的原位构建

    聚合物的两性离子段通常是刚性的,导致所有聚合物两性离子电解质通常太硬而无法与电极充分接触,这可能导致高界面电阻和设备的短寿命。
    发表于 10-17 15:48 356次阅读
    锂金属电池正负<b class='flag-5'>离子</b>协同调节功能的两性<b class='flag-5'>离子</b><b class='flag-5'>聚合物</b><b class='flag-5'>电解质</b>的原位构建

    构建选择性离子通道实现稳定的准固态锌离子电池

    凝胶电解质结合了液态和固态电解质的优点:快速的锌离子传输和相应的阴离子
    的头像 发表于 10-10 15:56 670次阅读
    构建选择性<b class='flag-5'>离子</b>通道实现稳定的准固态锌<b class='flag-5'>离子</b>电池

    LT3650单片式单节锂离子聚合物电池充电器电路

    使用LT3650单片式单节锂离子聚合物电池充电器可以设计出使用很少电子部件的简单充电器。 LT3650 提供了一种恒定电流恒定电压充电特性和最大充电电流(可从外部设置高达 2A) 的电流
    发表于 09-11 17:32

    高锂金属负极形貌稳定性的聚电解质

    与液态电解质聚合物电解质不同,聚电解质(polyelectrolytes)是一种大分子,其骨架上含有可电离基团。
    的头像 发表于 08-16 09:32 638次阅读
    高锂金属负极形貌稳定性的聚<b class='flag-5'>电解质</b>

    非对称均匀的3dB定向耦合器

    实现了一种基于非均匀非对称定向耦合器的新型宽带波长平坦3dB光耦合器。在1300-1600nm波长范围内,实现了3 dB± 0.3 dB的分束比。
    的头像 发表于 05-30 17:04 1094次阅读
    <b class='flag-5'>非对称</b>非<b class='flag-5'>均匀</b>的3dB定向耦合器