0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

光子芯片用可编程光子新材料,将良率提升超4倍

独爱72H 来源:智东西 作者:智东西 2020-03-31 20:46 次阅读

(文章来源:智东西)
据IEEE透露,最近荷兰埃因霍芬理工大学(Eindhoven University of Technolog)的研究人员发现了一种可转换的光学材料——氢化非晶硅,能够加快光子集成电路的研发和生产。

这项研究项目的负责人Oded Raz表示,这是第一个可编程的光子电路,研发人员可以对光子材料本身进行编程和重新设置,并且它不需要任何电力还保持自身的编程状态。在研究人员们看来,基于新型可编程材料的可重编程光子电路,将在一定程度上帮助工程师加速开发光子器件。电子集成电路(IC)是如今许多新技术发展和成熟的关键之一。但还有一种叫光子集成电路(PIC)的半导体技术,它是一种基于晶态半导体晶圆,集成有源和无源光子电路,以及单个微芯片上的电子元件,具有低能耗和高运行速度等性能优势。

但不足的是,目前PIC的制造方法存在大量的可变性,因此许多生产出来的光子器件与实际所需的规格有着轻微偏差,从而也限制了产量。而解决该问题的一个潜在方法,是开发可重新配置或可编程的PIC,以帮助补偿制造过程中产生的任何细微变化。

据了解,可重构PIC的关键组成部分是一种光学材料,这种材料的折射率可以在两种或以上的状态之间调整。然而,长期以来研究人员考察的许多可切换的光学材料,需要持续加热,这意味着它们需要一个恒定的电源和复杂系统来控制这些热量,并且切换时,其他材料的信号损耗会进一步降低性能。埃因霍芬理工大学的研究人员表示,他们发现的可转换光学材料,能够避免制造过程中可变性,以及切换性能损耗等不足。

具体地说,这种材料名叫氢化非晶硅,目前主要用于薄膜硅太阳能电池。研究人员在一个被称为“Staebler-Wronski效应”的研究中发现,光或热会改变氢化非晶硅的光学和电学性质,但当它在黑暗中缓慢冷却后,可以恢复一部分光学性质。其实这一效应在薄膜硅太阳能电池中是不可取的,但研究人员们推断,可重构PIC也许可以利用这个特点来弥补切换过程中的性能损耗。

为了验证推断,研究人员们将一层薄薄的氢化非晶硅,在近红外激光中浸泡了100小时以上,然后将它放置在黑暗中缓慢冷却4个小时。在这一过程中他们发现,近红外激光可以使材料的折射率增加0.3%,同时冷却可以将折射率降低0.3%,实现逆转。同时,这一变化产生的原因是由于光和热导致的材料体积膨胀。

紧接着,研究人员利用氢化非晶硅的微观环(microscopic rings),开发了可重新配置的光学开关。他们发现,光学开关能够可逆地改变这些器件的折射率,而不增加光学损耗。此外,在氢化非晶硅独立膜的实验中,研究人员还发现这些程序化状态具有长期稳定性,每种状态可至少持续一个月。Oded Raz谈到,目前行业中有人认为0.3%的折射率变化非常小,光靠这一点无法解决光子器件的所有问题。

但他指出,上世纪80年代有很多关于如何逆转Staebler-Wronski效应的研究。“我们可以逆向利用所有关于如何减小效应的见解,进一步放大这些效应,并作出更快的响应。”Oded Raz说。此外,未来像非晶硅锗或非晶硅碳等类似的材料,可能会有研究表明它们比氢化非晶硅更擅长进行能量转换。

在Oded Raz看来,如果未来的研究能够增强转换效应的强度,那么PIC的产量也将得到显著提高。他认为,以前的基本光子元件良率可能在10%到20%之间,而可编程光学材料可将良率提高到50%至80%。与此同时,产量的提高可反过来减少光子器件的生产制作时间。目前PIC从概念到制造这一过程,可能需要6至9个月的时间,并且由于制造过程存在的可变性,最终产品有可能无法达到研究人员期望的效果。

“这导致研究人员不不得不重复进行实验和制造。”Oded Raz谈到,有了可编程材料,就能大大缩短PIC原型制作的时间。此外,Oded Raz还提到,在理想情况下,可编程光学材料可以生产FPGA的光子版本,这可能有助于将原型开发时间从一年缩短到大约10小时或两周。
(责任编辑:fqj)

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 集成电路
    +关注

    关注

    5320

    文章

    10713

    浏览量

    353271
  • 光子芯片
    +关注

    关注

    3

    文章

    88

    浏览量

    24267
收藏 人收藏

    评论

    相关推荐

    光子集成芯片光子集成技术的区别

    光子集成芯片光子集成技术虽然紧密相关,但它们在定义和应用上存在一些区别。
    的头像 发表于 03-25 14:45 225次阅读

    光子集成芯片光子集成技术是什么

    光子集成芯片光子集成技术是光子学领域的重要概念,它们代表了光子在集成电路领域的应用和发展。
    的头像 发表于 03-25 14:17 247次阅读

    光子集成芯片是什么

    光子集成芯片,也称为光子芯片光子集成电路,是一种将光子器件小型化并集成在特殊衬底
    的头像 发表于 03-22 16:51 292次阅读

    光子集成芯片的应用领域

    光子集成芯片的应用领域相当广泛,其基于光子学的特性使得它在多个领域都能发挥重要作用。
    的头像 发表于 03-20 16:24 245次阅读

    微波光子集成芯片和硅基光子集成芯片的区别

    微波光子集成芯片和硅基光子集成芯片都是光电子领域的重要技术,但它们在设计原理、应用领域以及制造工艺上存在着显著的区别。
    的头像 发表于 03-20 16:14 219次阅读

    简单认识微波光子集成芯片和硅基光子集成芯片

    微波光子集成芯片是一种新型的集成光电子器件,它将微波信号和光信号在同一芯片上进行处理和传输。这种芯片的基本原理是利用光子器件和微波器件的相互
    的头像 发表于 03-20 16:11 222次阅读

    新型光子芯片:以光子替换电子执行AI数学运算

    这种新式芯片首次巧妙地融合了纳米尺度物质操作先驱纳德·恩赫塔和硅光子(SiPh)平台理念。其中,恩赫塔通过光的运用提高数学计算速率,而硅光子平台则应用硅元素——广泛用于制造电脑芯片的经
    的头像 发表于 02-18 16:17 354次阅读

    分享 | 可编程晶振芯片几个知识点

    什么是可编程晶振?可编程晶振多为有源晶振,由两个芯片组成;一个是全硅MEMS谐振器,一个是具有温补功能的芯片,可以启动电路锁相环CMOS
    的头像 发表于 01-09 17:51 546次阅读
    分享 | <b class='flag-5'>可编程</b>晶振<b class='flag-5'>芯片</b>几个知识点

    新型光子芯片全封装

    研究人员首次在标准芯片上放置光子滤波器和调制器 来源:Spectrum IEEE 悉尼大学纳米研究所的Alvaro Casas Bedoya(手持新型光子芯片)和Ben Eggleto
    的头像 发表于 12-28 16:11 224次阅读

    光科全息HOLOKOOK光子禁带超材料,助力电子信息时代升级到光子信息时代

    进行信息传输,完全摆脱了电子传输过程中的阻抗、热量和电磁干扰等问题,在高频率传输和大规模集成等方面具有巨大的优势。一代材料,一代产业,光子芯片的出现和发展,正推动人类社会从电子信息时代升级到
    的头像 发表于 11-27 15:14 537次阅读

    光子芯片简介

    光子芯片,这是一种依托光子学的集成电路,它将光子器件集成在芯片上 实现 光电子的集成。相较于传统的电子
    的头像 发表于 11-15 17:41 1201次阅读

    光子集成电路(PIC)加速未来光子芯片的开发周期

    液晶技术和MEMS技术使可重新编程光子集成电路(PIC)成为可能,这些PIC能够支持多种功能,并显著加速未来光子芯片的开发周期。
    的头像 发表于 07-31 09:29 3795次阅读
    <b class='flag-5'>光子</b>集成电路(PIC)加速未来<b class='flag-5'>光子</b><b class='flag-5'>芯片</b>的开发周期

    光子芯片的原理、制造技术及应用

    光子芯片(Photonics Chip)是一种基于光子学原理的集成电路芯片,其主要应用于光通信、光存储、光计算、光传感等领域。与传统电子芯片
    的头像 发表于 06-28 17:27 8806次阅读

    光子芯片的原理和应用

    光子芯片是一种基于光子学的集成电路,将光子器件集成在芯片上,实现了光电子集成。相比传统的电子芯片
    的头像 发表于 06-21 10:04 7599次阅读

    半导体材料在纳米光子学中的作用

    半导体材料在开发纳米光子技术方面发挥着重要作用。
    的头像 发表于 05-14 16:58 648次阅读
    半导体<b class='flag-5'>材料</b>在纳米<b class='flag-5'>光子</b>学中的作用