0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

5G时代氮化镓的优势到底有多明显

半导体动态 来源:康尔信电力系统 作者:康尔信电力系统 2020-03-17 11:04 次阅读

氮化镓(GaN)被誉为继第一代Ge、Si半导体材料、第二代GaAs、InP化合物半导体材料之后的第三代半导体材料,具有带隙宽、原子键强、导热率高、化学性能稳定、抗辐照能力强、结构类似纤锌矿、硬度很高等特点,在光电子、高温大功率器件和高频微波器件应用等方面有着广阔的应用前景。

5G时代,第三代半导体优势明显

第一代半导体材料主要是指硅(Si)、锗(Ge)元素半导体。它们在国际信息产业技术中的各类分立器件和集成电路电子信息网络工程等领域得到了极为广泛的应用。

第二代半导体材料是指化合物半导体材料,如砷化镓(GaAs)、锑化铟(InSb)、磷化铟(InP),以及三元化合物半导体材料,如铝砷化镓(GaAsAl)、磷砷化镓(GaAsP)等。还有一些固溶体半导体材料,如锗硅(Ge-Si)、砷化镓-磷化镓(GaAs-GaP)等;玻璃半导体(又称非晶态半导体)材料,如非晶硅、玻璃态氧化物半导体等;有机半导体材料,如酞菁、酞菁铜、聚丙烯腈等。第二代半导体材料主要用于制作高速、高频、大功率以及发光电子器件,是制作高性能微波、毫米波器件及发光器件的优良材料。

第三代半导体材料主要是以碳化硅(SiC)、氮化镓(GaN)、氧化锌(ZnO)、金刚石、氮化铝(AlN)为代表的宽禁带(禁带宽度 Eg》2.3eV)的半导体材料。

宽禁带半导体是高温、高频、抗辐射及大功率器件的适合材料。与第一代和第二代半导体材料相比,第三 代半导体材料具有更宽的禁带宽度、更高的击穿电场、更高的热导率、更大的电子饱和速度以及更高的抗辐射 能力,更适合制作高温、高频、抗辐射及大功率器件。从目前第三代半导体材料及器件的研究来看,较为成熟 的第三代半导体材料是SiC和GaN,而ZnO、金刚石、氮化铝等第三代半导体材料的研究尚属起步阶段。

靠快充火起来的氮化镓

作为第三代半导体材料的氮化镓(GaN),是一种坚硬的高熔点(熔点约为1700℃)材料,具有高频、高效率、耐高压等特性,用于制作多种功率器件和芯片

氮化镓在半导体材料领域的研究已经持续多年,近期广为人知,是因为它可以用在充电器中。

今年2月,小米发布新品,其中65W GaN充电器成为一大亮点。

这款充电器易散热、充电快(比iphone原装快50%,从0到100%的电量只需45分钟)、体积小(比常规充电器小了50%),且售价只要149元,性价比较高。3天预约就超5万,一时间,这一黑科技产品站上了风口,氮化镓也因此引发市场的强烈关注。

不过这并不是第一款氮化镓充电器,早在去年四季度,OPPO就发布了全球首款65W GaN充电器。两家大厂相继布局,意味着技术已经进一步成熟。

而且,氮化镓充电器并不仅仅用于手机充电。更小、更便捷的GaN充电器是解放笔记本的一大利器。未来,笔记本、新能源车或许都会用到氮化镓充电器。

5G带来更广阔的应用空间

充电市场并非氮化镓功率器件的唯一用武之地,它还应用于光电、射频领域。

非常值得一提的是,在射频领域,氮化镓射频器件适合高频高功率场景,是5G时代的绝佳产品,将替代Si基芯片,应用在5G基站、卫星通信、军用雷达等场景。

在政治局会议多次点名之下,5G基站的建设迎来高峰,相应的各种射频器件、芯片数量和质量都在提升,市场需求旺盛。氮化镓工艺正在逐步占领市场,已经势不可挡。拓璞产业研究院预计到2023年基站端GaN射频器件规模达到顶峰,达到112.6亿元。

再加上卫星通信、军用雷达的市场,据预测GaN射频市场将从2018年的6.45亿美元增长到2024年的约20亿美元。

另外,GaN基紫外激光器在紫外光固化、紫外杀菌等领域有重要的应用价值。疫情当前,中美都启用了基于GaN的紫外光进行消毒杀菌,相关市场随之增长。
责任编辑:wv

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 半导体
    +关注

    关注

    327

    文章

    24415

    浏览量

    201768
  • 氮化镓
    +关注

    关注

    53

    文章

    1491

    浏览量

    114834
  • 5G
    5G
    +关注

    关注

    1340

    文章

    47790

    浏览量

    553791
收藏 人收藏

    评论

    相关推荐

    5G 外置天线

    5G外置天线 新品介绍 5G圆顶天线和Whip天线旨在提供617 MHz至6000 MHz的宽带无缝高速互联网接入连接解决方案。这些天线的特点是高增益,即使在具有挑战性的环境中也能确保强大的信号
    发表于 01-02 11:58

    ARM和DSP到底有什么区别?

    现在在学ARM,想知道ARM和DSP到底有什么区别?为什么有些地方用DSP有些用ARM
    发表于 10-19 07:20

    氮化测试

    氮化
    jf_00834201
    发布于 :2023年07月13日 22:03:24

    有关氮化半导体的常见错误观念

    氮化(GaN)是一种全新的使能技术,可实现更高的效率、显着减小系统尺寸、更轻和于应用中取得硅器件无法实现的性能。那么,为什么关于氮化半导体仍然有如此
    发表于 06-25 14:17

    GaN功率半导体(氮化)的系统集成优势介绍

    GaN功率半导体(氮化)的系统集成优势
    发表于 06-19 09:28

    什么是氮化功率芯片?

    通过SMT封装,GaNFast™ 氮化功率芯片实现氮化器件、驱动、控制和保护集成。这些GaNFast™功率芯片是一种易于使用的“数字输入、电源输出” (digital in, po
    发表于 06-15 16:03

    为什么氮化比硅更好?

    氮化(GaN)是一种“宽禁带”(WBG)材料。禁带,是指电子从原子核轨道上脱离出来所需要的能量,氮化的禁带宽度为 3.4ev,是硅的 3 倍
    发表于 06-15 15:53

    氮化: 历史与未来

    200℃。 1972年,基于氮化材质的 LED 发光二极管才被发明出来(使用掺镁的氮化),。这是里程碑式的历史事件。虽然最初的
    发表于 06-15 15:50

    为什么氮化(GaN)很重要?

    极限。而上限更高的氮化,可以将充电效率、开关速度、产品尺寸和耐热性的优势有机统一,自然更受青睐。 随着全球能量需求的不断增加,采用氮化
    发表于 06-15 15:47

    什么是氮化(GaN)?

    的 3 倍,所以说氮化拥有宽禁带特性(WBG)。 禁带宽度决定了一种材料所能承受的电场。氮化比传统硅材料更大的禁带宽度,使它具有非常细
    发表于 06-15 15:41

    氮化功率芯片如何在高频下实现更高的效率?

    氮化为单开关电路准谐振反激式带来了低电荷(低电容)、低损耗的优势。和传统慢速的硅器件,以及分立氮化的典型开关频率(65kHz)相比,集成
    发表于 06-15 15:35

    氮化功率芯片的优势

    更小:GaNFast™ 功率芯片,可实现比传统硅器件芯片 3 倍的充电速度,其尺寸和重量只有前者的一半,并且在能量节约方面,它最高能节约 40% 的能量。 更快:氮化电源 IC 的集成设计使其非常
    发表于 06-15 15:32

    谁发明了氮化功率芯片?

    虽然低电压氮化功率芯片的学术研究,始于 2009 年左右的香港科技大学,但强大的高压氮化功率芯片平台的量产,则是由成立于 2014 年的纳微半导体最早进行研发的。纳微半导体的三位联
    发表于 06-15 15:28

    什么是氮化功率芯片?

    eMode硅基氮化技术,创造了专有的AllGaN™工艺设计套件(PDK),以实现集成氮化 FET、氮化
    发表于 06-15 14:17

    5G毫米波哪些优势

    设计和部署上有空间优势,非常适合与波束赋形技术相结合,增强性能并降低干扰。在典型天线阵列配置下,假设基站256个天线阵子,5G毫米波能够获得的理论波束赋形增益可达24dB;若终端8
    发表于 05-05 10:49