电子发烧友网 > 制造/封装 > PCB制造相关 > 正文

PCB电路设计70问是你的问题吗

2019年08月23日 17:04 次阅读

1、如何选择PCB 板材

选择PCB 板材必须在满足设计需求和可量产性及成本中间取得平衡点。设计需求包含电气和机构这两部分。通常在设计非常高速的 PCB 板子(大于 GHz 的频率)时这材质问题会比较重要。例如,现在常用的 FR-4 材质,在几个GHz 的频率时的介质损耗(dielectric loss)会对信号衰减有很大的影响,可能就不合用。就电气而言,要注意介电常数(dielectric constant)和介质损在所设计的频率是否合用。

PCB电路设计70问是你的问题吗

2、如何避免高频干扰?

避免高频干扰的基本思路是尽量降低高频信号电磁场的干扰,也就是所谓的串扰(Crosstalk)。可用拉大高速信号和模拟信号之间的距离,或加 ground guard/shunt traces 在模拟信号旁边。还要注意数字地对模拟地的噪声干扰。

3、在高速设计中,如何解决信号的完整性问题?

信号完整性基本上是阻抗匹配的问题。而影响阻抗匹配的因素有信号源的架构和输出阻抗(output impedance),走线的特性阻抗,负载端的特性,走线的拓朴(topology)架构等。解决的方式是靠端接(termination)与调整走线的拓朴。

4、差分布线方式是如何实现的?

差分对的布线有两点要注意,一是两条线的长度要尽量一样长,另一是两线的间距(此间距由差分阻抗决定)要一直保持不变,也就是要保持平行。平行的方式有两种,一为两条线走在同一走线层(side-by-side),一为两条线走在上下相邻两层(over-under)。一般以前者 side-by-side(并排, 并肩) 实现的方式较多。

5、对于只有一个输出端的时钟信号线,如何实现差分布线?

要用差分布线一定是信号源和接收端也都是差分信号才有意义。所以对只有一个输出端的时钟信号是无法使用差分布线的。

6、接收端差分线对之间可否加一匹配电阻

接收端差分线对间的匹配电阻通常会加, 其值应等于差分阻抗的值。这样信号质量会好些。

7、为何差分对的布线要靠近且平行?

对差分对的布线方式应该要适当的靠近且平行。所谓适当的靠近是因为这间距会影响到差分阻抗(differenTIal impedance)的值, 此值是设计差分对的重要参数。需要平行也是因为要保持差分阻抗的一致性。若两线忽远忽近, 差分阻抗就会不一致, 就会影响信号完整性(signal integrity)及时间延迟(TIming delay)。

8、如何处理实际布线中的一些理论冲突的问题

基本上, 将模/数地分割隔离是对的。 要注意的是信号走线尽量不要跨过有分割的地方(moat), 还有不要让电源和信号的回流电流路径(returning current path)变太大。

晶振是模拟的正反馈振荡电路, 要有稳定的振荡信号, 必须满足loop gain 与 phase 的规范, 而这模拟信号的振荡规范很容易受到干扰, 即使加 ground guard traces 可能也无法完全隔离干扰。而且离的太远,地平面上的噪声也会影响正反馈振荡电路。 所以, 一定要将晶振和芯片的距离进可能靠近。

确实高速布线与 EMI 的要求有很多冲突。但基本原则是因 EMI 所加的电阻电容或 ferrite bead, 不能造成信号的一些电气特性不符合规范。 所以, 最好先用安排走线和 PCB 迭层的技巧来解决或减少 EMI的问题, 如高速信号走内层。最后才用电阻电容或 ferrite bead 的方式, 以降低对信号的伤害。

9、如何解决高速信号的手工布线和自动布线之间的矛盾?

现在较强的布线软件的自动布线器大部分都有设定约束条件来控制绕线方式及过孔数目。各家 EDA公司的绕线引擎能力和约束条件的设定项目有时相差甚远。 例如, 是否有足够的约束条件控制蛇行线(serpenTIne)蜿蜒的方式, 能否控制差分对的走线间距等。 这会影响到自动布线出来的走线方式是否能符合设计者的想法。 另外, 手动调整布线的难易也与绕线引擎的能力有绝对的关系。 例如, 走线的推挤能力,过孔的推挤能力, 甚至走线对敷铜的推挤能力等等。 所以, 选择一个绕线引擎能力强的布线器, 才是解决之道。

10、关于 test coupon。

test coupon 是用来以 TDR (TIme Domain Reflectometer) 测量所生产的 PCB 板的特性阻抗是否满足设计需求。 一般要控制的阻抗有单根线和差分对两种情况。 所以, test coupon 上的走线线宽和线距(有差分对时)要与所要控制的线一样。 最重要的是测量时接地点的位置。 为了减少接地引线(ground lead)的电感值, TDR 探棒(probe)接地的地方通常非常接近量信号的地方(probe tip), 所以, test coupon 上量测信号的点跟接地点的距离和方式要符合所用的探棒。

推荐:《高速电路设计分析与仿真》 课程

长按二维码查看课程详情或参与学习

(可以免费试看)

11、在高速 PCB 设计中,信号层的空白区域可以敷铜,而多个信号层的敷铜在接地和接电源上应如何分配?

一般在空白区域的敷铜绝大部分情况是接地。 只是在高速信号线旁敷铜时要注意敷铜与信号线的距离, 因为所敷的铜会降低一点走线的特性阻抗。也要注意不要影响到它层的特性阻抗, 例如在 dual strip line 的结构时。

12、是否可以把电源平面上面的信号线使用微带线模型计算特性阻抗?电源和地平面之间的信号是否可以使用带状线模型计算?

是的, 在计算特性阻抗时电源平面跟地平面都必须视为参考平面。 例如四层板: 顶层-电源层-地层-底层,这时顶层走线特性阻抗的模型是以电源平面为参考平面的微带线模型。

13、在高密度印制板上通过软件自动产生测试点一般情况下能满足大批量生产的测试要求吗?

一般软件自动产生测试点是否满足测试需求必须看对加测试点的规范是否符合测试机具的要求。另外,如果走线太密且加测试点的规范比较严,则有可能没办法自动对每段线都加上测试点,当然,需要手动补齐所要测试的地方。

14、添加测试点会不会影响高速信号的质量?

至于会不会影响信号质量就要看加测试点的方式和信号到底多快而定。基本上外加的测试点(不用在线既有的穿孔(via or DIP pin)当测试点)可能加在在线或是从在线拉一小段线出来。前者相当于是加上一个很小的电容在在线,后者则是多了一段分支。这两个情况都会对高速信号多多少少会有点影响,影响的程度就跟信号的频率速度和信号缘变化率(edge rate)有关。影响大小可透过仿真得知。原则上测试点越小越好(当然还要满足测试机具的要求)分支越短越好。

15、若干 PCB 组成系统,各板之间的地线应如何连接?

各个 PCB 板子相互连接之间的信号或电源在动作时,例如 A 板子有电源或信号送到 B 板子,一定会有等量的电流从地层流回到 A 板子 (此为 Kirchoff current law)。这地层上的电流会找阻抗最小的地方流回去。所以,在各个不管是电源或信号相互连接的接口处,分配给地层的管脚数不能太少,以降低阻抗,这样可以降低地层上的噪声。另外,也可以分析整个电流环路,尤其是电流较大的部分,调整地层或地线的接法,来控制电流的走法(例如,在某处制造低阻抗,让大部分的电流从这个地方走),降低对其它较敏感信号的影响。

16、能介绍一些国外关于高速 PCB 设计的技术书籍和数据吗?

现在高速数字电路的应用有通信网路和计算器等相关领域。在通信网路方面,PCB 板的工作频率已达 GHz 上下,叠层数就我所知有到 40 层之多。计算器相关应用也因为芯片的进步,无论是一般的 PC 或服务器(Server),板子上的最高工作频率也已经达到 400MHz (如 Rambus) 以上。因应这高速高密度走线需求,盲埋孔(blind/buried vias)、mircrovias 及 build-up 制程工艺的需求也渐渐越来越多。 这些设计需求都有厂商可大量生产。

17、两个常被参考的特性阻抗公式:

微带线(microstrip) Z={87/[sqrt(Er+1.41)]}ln[5.98H/(0.8W+T)] 其中,W 为线宽,T 为走线的铜皮厚度,H 为走线到参考平面的距离,Er 是 PCB 板材质的介电常数(dielectric constant)。此公式必须在0.1《(W/H)《2.0 及 1《(Er)《15 的情况才能应用。

带状线(stripline) Z=[60/sqrt(Er)]ln{4H/[0.67π(T+0.8W)]} 其中,H 为两参考平面的距离,并且走线位于两参考平面的中间。此公式必须在 W/H《0.35 及 T/H《0.25 的情况才能应用。

18、差分信号线中间可否加地线?

差分信号中间一般是不能加地线。因为差分信号的应用原理最重要的一点便是利用差分信号间相互耦合(coupling)所带来的好处,如 flux cancellation,抗噪声(noise immunity)能力等。若在中间加地线,便会破坏耦合效应。

19、刚柔板设计是否需要专用设计软件与规范?国内何处可以承接该类电路板加工?

可以用一般设计 PCB 的软件来设计柔性电路板(Flexible Printed Circuit)。一样用 Gerber 格式给 FPC厂商生产。由于制造的工艺和一般 PCB 不同,各个厂商会依据他们的制造能力会对最小线宽、最小线距、最小孔径(via)有其**。除此之外,可在柔性电路板的转折处铺些铜皮加以补强。至于生产的厂商可上网“FPC”当关键词查询应该可以找到。

20、适当选择 PCB 与外壳接地的点的原则是什么?

选择 PCB 与外壳接地点选择的原则是利用 chassis ground 提供低阻抗的路径给回流电流(returning current)及控制此回流电流的路径。例如,通常在高频器件或时钟产生器附近可以借固定用的螺丝将 PCB的地层与 chassis ground 做连接,以尽量缩小整个电流回路面积,也就减少电磁辐射。

21、电路板 DEBUG 应从那几个方面着手?

就数字电路而言,首先先依序确定三件事情: 1. 确认所有电源值的大小均达到设计所需。有些多重电源的系统可能会要求某些电源之间起来的顺序与快慢有某种规范。 2. 确认所有时钟信号频率都工作正常且信号边缘上没有非单调(non-monotonic)的问题。3. 确认 reset 信号是否达到规范要求。 这些都正常的话,芯片应该要发出第一个周期(cycle)的信号。接下来依照系统运作原理与 bus protocol 来 debug。

22、在电路板尺寸固定的情况下,如果设计中需要容纳更多的功能,就往往需要提高 PCB 的走线密度,但是这样有可能导致走线的相互干扰增强,同时走线过细也使阻抗无法降低,请专家介绍在高速(》100MHz)高密度 PCB 设计中的技巧?

在设计高速高密度 PCB 时,串扰(crosstalk interference)确实是要特别注意的,因为它对时序(timing)与信号完整性(signal integrity)有很大的影响。以下提供几个注意的地方:

控制走线特性阻抗的连续与匹配。

走线间距的大小。一般常看到的间距为两倍线宽。可以透过仿真来知道走线间距对时序及信号完整性的影响,找出可容忍的最小间距。不同芯片信号的结果可能不同。

选择适当的端接方式。

避免上下相邻两层的走线方向相同,甚至有走线正好上下重叠在一起,因为这种串扰比同层相邻走线的情形还大。

利用盲埋孔(blind/buried via)来增加走线面积。但是 PCB 板的制作成本会增加。在实际执行时确实很难达到完全平行与等长,不过还是要尽量做到。

除此以外,可以预留差分端接和共模端接,以缓和对时序与信号完整性的影响。

23、模拟电源处的滤波经常是用 LC 电路。但是为什么有时 LC 比 RC 滤波效果差?

LC 与 RC 滤波效果的比较必须考虑所要滤掉的频带与电感值的选择是否恰当。因为电感的感抗(reactance)大小与电感值和频率有关。如果电源的噪声频率较低,而电感值又不够大,这时滤波效果可能不如 RC。但是,使用 RC 滤波要付出的代价是电阻本身会耗能,效率较差,且要注意所选电阻能承受的功率。

24、滤波时选用电感,电容值的方法是什么?

电感值的选用除了考虑所想滤掉的噪声频率外,还要考虑瞬时电流的反应能力。如 果 LC 的输出端会有机会需要瞬间输出大电流,则电感值太大会阻碍此大电流流经此电感的速度,增加纹波噪声(ripple noise)。电容值则和所能容忍的纹波噪声规范值的大小有关。纹波噪声值要求越小,电容值会较大。而电容的ESR/ESL 也会有影响。另外,如果这 LC 是放在开关式电源(switching regulation power)的输出端时,还要注意此 LC 所产生的极点零点(pole/zero)对负反馈控制(negative feedback control)回路稳定度的影响。

25、如何尽可能的达到 EMC 要求,又不致造成太大的成本压力?

PCB 板上会因 EMC 而增加的成本通常是因增加地层数目以增强屏蔽效应及增加了 ferrite bead、choke等抑制高频谐波器件的缘故。除此之外,通常还是需搭配其它机构上的屏蔽结构才能使整个系统通过 EMC的要求。以下仅就 PCB 板的设计技巧提供几个降低电路产生的电磁辐射效应。

尽可能选用信号斜率(slew rate)较慢的器件,以降低信号所产生的高频成分。

注意高频器件摆放的位置,不要太靠近对外的连接器

注意高速信号的阻抗匹配,走线层及其回流电流路径(return current path), 以减少高频的反射与辐射。

在各器件的电源管脚放置足够与适当的去耦合电容以缓和电源层和地层上的噪声。特别注意电容的频率响应与温度的特性是否符合设计所需。

对外的连接器附近的地可与地层做适当分割,并将连接器的地就近接到 chassis ground。

可适当运用 ground guard/shunt traces 在一些特别高速的信号旁。但要注意 guard/shunt traces 对走线特性阻抗的影响。

电源层比地层内缩 20H,H 为电源层与地层之间的距离。

26、当一块 PCB 板中有多个数/模功能块时,常规做法是要将数/模地分开,原因何在?

将数/模地分开的原因是因为数字电路在高低电位切换时会在电源和地产生噪声,噪声的大小跟信号的速度及电流大小有关。如果地平面上不分割且由数字区域电路所产生的噪声较大而模拟区域的电路又非常接近,则即使数模信号不交叉,模拟的信号依然会被地噪声干扰。也就是说数模地不分割的方式只能在模拟电路区域距产生大噪声的数字电路区域较远时使用。

27、另一种作法是在确保数/模分开布局,且数/模信号走线相互不交叉的情况下,整个 PCB板地不做分割,数/模地都连到这个地平面上。道理何在?

数模信号走线不能交叉的要求是因为速度稍快的数字信号其返回电流路径(return current path)会尽量沿着走线的下方附近的地流回数字信号的源头,若数模信号走线交叉,则返回电流所产生的噪声便会出现在模拟电路区域内。

28、在高速 PCB 设计原理图设计时,如何考虑阻抗匹配问题?

在设计高速 PCB 电路时,阻抗匹配是设计的要素之一。而阻抗值跟走线方式有绝对的关系,例如是走在表面层(microstrip)或内层(stripline/double stripline),与参考层(电源层或地层)的距离,走线宽度,PCB材质等均会影响走线的特性阻抗值。也就是说要在布线后才能确定阻抗值。一般仿真软件会因线路模型或所使用的数学算法的**而无法考虑到一些阻抗不连续的布线情况,这时候在原理图上只能预留一些terminators(端接),如串联电阻等,来缓和走线阻抗不连续的效应。真正根本解决问题的方法还是布线时尽量注意避免阻抗不连续的发生。

29、哪里能提供比较准确的 IBIS 模型库?

IBIS 模型的准确性直接影响到仿真的结果。基本上 IBIS 可看成是实际芯片 I/O buffer 等效电路的电气特性数据,一般可由 SPICE 模型转换而得 (亦可采用测量, 但**较多),而 SPICE 的数据与芯片制造有绝对的关系,所以同样一个器件不同芯片厂商提供,其 SPICE 的数据是不同的,进而转换后的 IBIS 模型内之数据也会随之而异。也就是说,如果用了 A 厂商的器件,只有他们有能力提供他们器件准确模型数据,因为没有其它人会比他们更清楚他们的器件是由何种工艺做出来的。如果厂商所提供的 IBIS 不准确,只能不断要求该厂商改进才是根本解决之道。

30、在高速 PCB 设计时,设计者应该从那些方面去考虑 EMC、EMI 的规则呢?

一般 EMI/EMC 设计时需要同时考虑辐射(radiated)与传导(conducted)两个方面。 前者归属于频率较高的部分(》30MHz)后者则是较低频的部分(《30MHz)。 所以不能只注意高频而忽略低频的部分。一个好的EMI/EMC 设计必须一开始布局时就要考虑到器件的位置, PCB 叠层的安排, 重要联机的走法, 器件的选择等, 如果这些没有事前有较佳的安排, 事后解决则会事倍功半, 增加成本。 例如时钟产生器的位置尽量不要靠近对外的连接器, 高速信号尽量走内层并注意特性阻抗匹配与参考层的连续以减少反射, 器件所推的信号之斜率(slew rate)尽量小以减低高频成分, 选择去耦合(decoupling/bypass)电容时注意其频率响应是否符合需求以降低电源层噪声。 另外, 注意高频信号电流之回流路径使其回路面积尽量小(也就是回路阻抗loop impedance 尽量小)以减少辐射。 还可以用分割地层的方式以控制高频噪声的范围。 最后, 适当的选择PCB 与外壳的接地点(chassis ground)。

31、如何选择 EDA 工具?

目前的 pcb 设计软件中,热分析都不是强项,所以并不建议选用,其它的功能 1.3.4 可以选择 PADSCadence 性能价格比都不错。 PLD 的设计的初学者可以采用 PLD 芯片厂家提供的集成环境,在做到百万门以上的设计时可以选用单点工具。

32、请推荐一种适合于高速信号处理和传输的 EDA 软件。

常规的电路设计,INNOVEDA 的 PADS 就非常不错,且有配合用的仿真软件,而这类设计往往占据了 70%的应用场合。在做高速电路设计,模拟和数字混合电路,采用 Cadence 的解决方案应该属于性能价格比较好的软件,当然 Mentor 的性能还是非常不错的,特别是它的设计流程管理方面应该是最为优秀的。(大唐电信技术专家 王升)

33、对 PCB 板各层含义的解释

Topoverlay ----顶层器件名称, 也叫 top silkscreen 或者 top component legend, 比如 R1 C5,

IC10.bottomoverlay----同理 multilayer-----如果你设计一个 4 层板,你放置一个 free pad or via, 定义它作为multilay 那么它的 pad 就会自动出现在 4 个层 上,如果你只定义它是 top layer, 那么它的 pad 就会只出现在顶层上。

34、2G 以上高频 PCB 设计,走线,排版,应重点注意哪些方面?

2G 以上高频 PCB 属于射频电路设计,不在高速数字电路设计讨论范围内。而 射频电路的布局(layout)和布线(routing)应该和原理图一起考虑的,因为布局布线都会造成分布效应。而且,射频电路设计一些无源器件是通过参数化定义,特殊形状铜箔实现,因此要求 EDA 工具能够提供参数化器件,能够编辑特殊形状铜箔。Mentor 公司的 boardstation 中有专门的 RF 设计模块,能够满足这些要求。而且,一般射频设计要求有专门射频电路分析工具,业界最著名的是 agilent 的 eesoft,和 Mentor 的工具有很好的接口。

35、2G 以上高频 PCB 设计,微带的设计应遵循哪些规则?

射频微带线设计,需要用三维场分析工具提取传输线参数。所有的规则应该在这个场提取工具中规定。

推荐:《高速电路设计分析与仿真》 课程

长按二维码查看课程详情或参与学习

(可以免费试看)

36、对于全数字信号的 PCB,板上有一个 80MHz 的钟源。除了采用丝网(接地)外,为了保证有足够的驱动能力,还应该采用什么样的电路进行保护?

确保时钟的驱动能力,不应该通过保护实现,一般采用时钟驱动芯片。一般担心时钟驱动能力,是因为多个时钟负载造成。采用时钟驱动芯片,将一个时钟信号变成几个,采用点到点的连接。选择驱动芯片,除了保证与负载基本匹配,信号沿满足要求(一般时钟为沿有效信号),在计算系统时序时,要算上时钟在驱动芯片内时延。

37、如果用单独的时钟信号板,一般采用什么样的接口,来保证时钟信号的传输受到的影响小?

时钟信号越短,传输线效应越小。采用单独的时钟信号板,会增加信号布线长度。而且单板的接地供电也是问题。如果要长距离传输,建议采用差分信号。L号可以满足驱动能力要求,不过您的时钟不是太快,没有必要。

38、27M,SDRAM 时钟线(80M-90M),这些时钟线二三次谐波刚好在 VHF 波段,从接收端高频窜入后干扰很大。除了缩短线长以外,还有那些好办法?

如果是三次谐波大,二次谐波小,可能因为信号占空比为 50%,因为这种情况下,信号没有偶次谐波。这时需要修改一下信号占空比。此外,对于如果是单向的时钟信号,一般采用源端串联匹配。这样可以抑制二次反射,但不会影响时钟沿速率。源端匹配值,可以采用下图公式得到。

39、什么是走线的拓扑架构?

Topology,有的也叫 routing order.对于多端口连接的网络的布线次序。

40、怎样调整走线的拓扑架构来提高信号的完整性?

这种网络信号方向比较复杂,因为对单向,双向信号,不同电平种类信号,拓朴影响都不一样,很难说哪种拓朴对信号质量有利。而且作前仿真时,采用何种拓朴对工程师要求很高,要求对电路原理,信号类型,甚至布线难度等都要了解。

41、怎样通过安排叠层来减少 EMI 问题?

首先,EMI 要从系统考虑,单凭 PCB 无法解决问题。层迭对 EMI 来讲,我认为主要是提供信号最短回流路径,减小耦合面积,抑制差模干扰。另外地层与电源层紧耦合,适当比电源层外延,对抑制共模干扰有好处。

42、为何要铺铜?

一般铺铜有几个方面原因。1,EMC.对于大面积的地或电源铺铜,会起到屏蔽作用,有些特殊地,如 PGND 起到防护作用。2,PCB 工艺要求。一般为了保证电镀效果,或者层压不变形,对于布线较少的PCB 板层铺铜。3,信号完整性要求,给高频数字信号一个完整的回流路径,并减少直流网络的布线。当然还有散热,特殊器件安装要求铺铜等等原因。

43、在一个系统中,包含了 dsp 和 pld,请问布线时要注意哪些问题呢?

看你的信号速率和布线长度的比值。如果信号在传输在线的时延和信号变化沿时间可比的话,就要考虑信号完整性问题。另外对于多个 DSP,时 钟,数据 信号走线拓普也会影响信号质量和时序,需要关注。

44、除 protel 工具布线外,还有其他好的工具吗?

至于工具,除了 PROTEL,还有很多布线工具,如 MENTOR 的 WG2000,EN2000 系列和 powerpcb,Cadence 的 allegro,zuken 的 cadstar,cr5000 等,各有所长。

45、什么是“信号回流路径”?

信号回流路径,即 return current。高速数字信号在传输时,信号的流向是从驱动器沿 PCB 传输线到负载,再由负载沿着地或电源通过最短路径返回驱动器端。这个在地或电源上的返回信号就称信号回流路径。Dr.Johson 在他的书中解释,高频信号传输,实际上是对传输线与直流层之间包夹的介质电容充电的过程。SI 分析的就是这个围场的电磁特性,以及他们之间的耦合。

46、如何对接插件进行 SI 分析?

在 IBIS3.2 规范中,有关于接插件模型的描述。一般使用 EBD 模型。如果是特殊板,如背板,需要SPICE 模型。也可以使用多板仿真软件(HYPERLYNX 或 IS_multiboard),建立多板系统时,输入接插件的分布参数,一般从接插件手册中得到。当然这种方式会不够精确,但只要在可接受范围内即可。

47、请问端接的方式有哪些?

端接(terminal),也称匹配。一般按照匹配位置分有源端匹配和终端匹配。其中源端匹配一般为电阻串联匹配,终端匹配一般为并联匹配,方式比较多,有电阻上拉,电阻下拉,戴维南匹配,AC 匹配,肖特基二极管匹配。

48、采用端接(匹配)的方式是由什么因素决定的?

匹配采用方式一般由 BUFFER 特性,拓普情况,电平种类和判决方式来决定,也要考虑信号占空比,系统功耗等。

49、采用端接(匹配)的方式有什么规则?

数字电路最关键的是时序问题,加匹配的目的是改善信号质量,在判决时刻得到可以确定的信号。对于电平有效信号,在保证建立、保持时间的前提下,信号质量稳定;对延有效信号,在保证信号延单调性前提下,信号变化延速度满足要求。Mentor ICX 产品教材中有关于匹配的一些资料。另外《High Speed Digital design a hand book of blackmagic》有一章专门对 terminal 的讲述,从电磁波原理上讲述匹配对信号完整性的作用,可供参考。

50、能否利用器件的 IBIS 模型对器件的逻辑功能进行仿真?如果不能,那么如何进行电路的板级和系统级仿真?

IBIS 模型是行为级模型,不能用于功能仿真。功能仿真,需要用 SPICE 模型,或者其他结构级模型。

51、在数字和模拟并存的系统中,有 2 种处理方法,一个是数字地和模拟地分开,比如在地层,数字地是独立地一块,模拟地独立一块,单点用铜皮或 FB 磁珠连接,而电源不分开;另一种是模拟电源和数字电源分开用 FB 连接,而地是统一地地。请问李先生,这两种方法效果是否一样?

应该说从原理上讲是一样的。因为电源和地对高频信号是等效的。

区分模拟和数字部分的目的是为了抗干扰,主要是数字电路对模拟电路的干扰。但是,分割可能造成信号回流路径不完整,影响数字信号的信号质量,影响系统 EMC 质量。因此,无论分割哪个平面,要看这样作,信号回流路径是否被增大,回流信号对正常工作信号干扰有多大。现在也有一些混合设计,不分电源和地,在布局时,按照数字部分、模拟部分分开布局布线,避免出现跨区信号。

推荐:《高速电路设计分析与仿真》 课程

长按二维码查看课程详情或参与学习

(可以免费试看)

52、安规问题:FCC、EMC 的具体含义是什么?

FCC: federal communication commission 美国通信委员会

EMC: electro megnetic compatibility 电磁兼容

FCC 是个标准组织,EMC 是一个标准。标准颁布都有相应的原因,标准和测试方法。

53、何谓差分布线?

差分信号,有些也称差动信号,用两根完全一样,极性相反的信号传输一路数据,依靠两根信号电平差进行判决。为了保证两根信号完全一致,在布线时要保持并行,线宽、线间距保持不变。

54、PCB 仿真软件有哪些?

仿 真 的种类很多, 高 速 数 字电 路 信 号 完 整 性 分 析 仿 真 分析(SI) 常 用 软 件有icx,signalvision,hyperlynx,XTK,speectraquest 等。有些也用 Hspice。

55、PCB 仿真软件是如何进行 LAYOUT 仿真的?

高速数字电路中,为了提高信号质量,降低布线难度,一般采用多层板,分配专门的电源层,地层。

56、在布局、布线中如何处理才能保证 50M 以上信号的稳定性

高速数字信号布线,关键是减小传输线对信号质量的影响。因此,100M 以上的高速信号布局时要求信号走线尽量短。数字电路中,高速信号是用信号上升延时间来界定的。而 且 ,不 同种类的信号(如 TTL,GTL,LVTTL),确保信号质量的方法不一样。

57、室外单元的射频部分,中频部分,乃至对室外单元进行监控的低频电路部分往往采用部署在同一 PCB 上,请问对这样的 PCB 在材质上有何要求?如何防止射频,中频乃至低频电路互相之间的干扰?

混合电路设计是一个很大的问题。很难有一个完美的解决方案。

一般射频电路在系统中都作为一个独立的单板进行布局布线,甚至会有专门的屏蔽腔体。而且射频电路一般为单面或双面板,电路较为简单,所有这些都是为了减少对射频电路分布参数的影响,提高射频系统的一致性。相对于一般的 FR4 材质,射频电路板倾向与采用高 Q 值的基材,这种材料的介电常数比较小,传输线分布电容较小,阻抗高,信号传输时延小。在混合电路设计中,虽然射频,数字电路做在同一块 PCB 上,但一般都分成射频电路区和数字电路区,分别布局布线。之间用接地过孔带和屏蔽盒屏蔽。

58、对于射频部分,中频部分和低频电路部分部署在同一 PCB 上,mentor 有什么解决方案?

Mentor 的板级系统设计软件,除了基本的电路设计功能外,还有专门的 RF 设计模块。在 RF 原理图设计模块中,提供参数化的器件模型,并且提供和 EESOFT 等射频电路分析仿真工具的双向接口;在 RF LAYOUT 模块中,提供专门用于射频电路布局布线的图案编辑功能,也有和 EESOFT 等射频电路分析仿真工具的双向接口,对于分析仿真后的结果可以反标回原理图和 PCB。同时,利用 Mentor 软件的设计管理功能,可以方便的实现设计复用,设计派生,和协同设计。大大加速混合电路设计进程。手机板是典型的混合电路设计,很多大型手机设计制造商都利用 Mentor 加安杰伦的 eesoft 作为设计平台。

59、Mentor 的产品结构如何?

Mentor Graphics 的 PCB 工具有 WG(原 veribest)系列和 Enterprise(boardstation)系列。

60、Mentor 的 PCB 设计软件对 BGA、PGA、COB 等封装是如何支持的?

Mentor 的 autoactive RE 由收购得来的 veribest 发展而来,是业界第一个无网格,任意角度布线器。众所周知,对于球栅数组,COB 器件,无网格,任意角度布线器是解决布通率的关键。在最新的autoactive RE 中,新增添了推挤过孔,铜箔,REROUTE 等功能,使它应用更方便。另外,他支持高速布线,包括有时延要求信号布线和差分对布线。

61、Mentor 的 PCB 设计软件对差分线队的处理又如何?

Mentor 软件在定义好差分对属性后,两根差分对可以一起走线,严格保证差分对线宽,间距和长度差,遇到障碍可以自动分开,在换层时可以选择过孔方式。

62、在一块 12 层 PCb 板上,有三个电源层 2.2v,3.3v,5v,将三个电源各作在一层,地线该如何处理?

一般说来,三个电源分别做在三层,对信号质量比较好。因为不大可能出现信号跨平面层分割现象。跨分割是影响信号质量很关键的一个因素,而仿真软件一般都忽略了它。对于电源层和地层,对高频信号来说都是等效的。在实 际 中,除了考虑信号质量外,电 源 平 面 耦 合 ( 利 用相邻地平面降低电源平面交流阻抗),层迭对称,都是需要考虑的因素。

63、PCB 在出厂时如何检查是否达到了设计工艺要求?

很多 PCB 厂家在 PCB 加工完成出厂前,都要经过加电的网络通断测试,以确保所有联线正确。同时,越来越多的厂家也采用 x 光测试,检查蚀刻或层压时的一些故障。对于贴片加工后的成品板,一般采用 ICT测试检查,这需要在 PCB 设计时添加 ICT 测试点。如果出现问题,也可以通过一种特殊的 X 光检查设备排除是否加工原因造成故障。

64、“机构的防护”是不是机壳的防护?

是的。机壳要尽量严密,少用或不用导电材料,尽可能接地。

65、在芯片选择的时候是否也需要考虑芯片本身的 esd 问题?

不论是双层板还是多层板,都应尽量增大地的面积。在选择芯片时要考虑芯片本身的 ESD 特性,这些在芯片说明中一般都有提到,而且即使不同厂家的同一种芯片性能也会有所不同。设计时多加注意,考虑的全面一点,做出电路板的性能也会得到一定的保证。但 ESD 的问题仍然可能出现,因此机构的防护对ESD 的防护也是相当重要的。

66、在做 pcb 板的时候,为了减小干扰,地线是否应该构成闭和形式?

在做 PCB 板的时候,一般来讲都要减小回路面积,以便减少干扰,布地线的时候,也不应布成闭合形式,而是布成树枝状较好,还有就是要尽可能增大地的面积。

67、如果仿真器用一个电源,pcb 板用一个电源,这两个电源的地是否应该连在一起?

如果可以采用分离电源当然较好,因为如此电源间不易产生干扰,但大部分设备是有具体要求的。既然仿真器和 PCB 板用的是两个电源,按我的想法是不该将其共地的。

68、一个电路由几块 pcb 板构成,他们是否应该共地?

一个电路由几块 PCB 构成,多半是要求共地的,因为在一个电路中用几个电源毕竟是不太实际的。但如果你有具体的条件,可以用不同电源当然干扰会小些。

69、设计一个手持产品,带 LCD,外壳为金属。测试 ESD 时,无法通过 ICE-1000-4-2 的测试,CONTACT 只能通过 1100V,AIR 可以通过 6000V。ESD 耦合测试时,水平只能可以通过 3000V,垂直可以通过 4000V 测试。CPU 主频为 33MHZ。有什么方法可以通过 ESD 测试?

手持产品又是金属外壳,ESD 的问题一定比较明显,LCD 也恐怕会出现较多的不良现象。如果没办法改变现有的金属材质,则建议在机构内部加上防电材料,加强 PCB 的地,同时想办法让 LCD 接地。当然,如何操作要看具体情况。

70、设计一个含有 DSP,PLD 的系统,该从那些方面考虑 ESD?

就一般的系统来讲,主要应考虑人体直接接触的部分,在电路上以及机构上进行适当的保护。至于ESD 会对系统造成多大的影响,那还要依不同情况而定。干燥的环境下,ESD 现象会比较严重,较敏感精细的系统,ESD 的影响也会相对明显。虽然大的系统有时 ESD 影响并不明显,但设计时还是要多加注意,尽量防患于未然。

下载发烧友APP

打造属于您的人脉电子圈

关注电子发烧友微信

有趣有料的资讯及技术干货

关注发烧友课堂

锁定最新课程活动及技术直播

电子发烧友观察

一线报道 · 深度观察 · 最新资讯
收藏 人收藏
分享:

评论

相关推荐

美国硅谷特聘高级设计师揭秘: DC-DC 电源模块PCB设计

主要和学员讲解怎么去分析一个DCDC电源的主干道,认清楚各路电路的主次和作用,从而把握PCB布局布线要点,做好一个满足实

发烧友学院 发表于 2018-06-21 00:00 395次阅读
美国硅谷特聘高级设计师揭秘: DC-DC 电源模块PCB设计

HDI板与普通PCB之间的差异在哪里

普通的PCB板材是FR-4为主,其为环氧树脂和电子级玻璃布压合而成的。

发表于 2019-08-23 17:10 0次阅读
HDI板与普通PCB之间的差异在哪里

PCB板电镀过孔性能评估有了5G有什么改变

5G无线网络因覆盖了较宽的频带,对工作于毫米波频率下5G电路的线路板材料提出了特殊的要求。

发表于 2019-08-23 16:59 3次阅读
PCB板电镀过孔性能评估有了5G有什么改变

pcb显影不净的原因是什么

高密度图像转移工艺过程中,若控制失灵,极容易渗镀、显影不良或抗蚀干膜剥离等质量问题。

发表于 2019-08-23 16:56 3次阅读
pcb显影不净的原因是什么

制板时PCB抄板怎样操作才是正确的

制板时pcb的抄板 于 PCB开制钢网时抄板是两个不同的概念,两者使用的抄板类型和软件皆不相同。

发表于 2019-08-23 16:50 4次阅读
制板时PCB抄板怎样操作才是正确的

PCB叠层设计得注意的问题有哪些

PCB的叠层设计通常是在考虑各方面的因素后折中决定的。高速数字电路和射须电路通常采用多层板设计。

发表于 2019-08-23 16:45 3次阅读
PCB叠层设计得注意的问题有哪些

PCB传送机构你了解多少

连接器应用十分广泛,从小到无线蓝牙耳机大到火箭军工等领域都存在着它的身影,而连接器关键的部件就是它的...

发表于 2019-08-23 16:42 4次阅读
PCB传送机构你了解多少

pcb设计开槽对EMI的不良影响怎样来改良

开槽对PCB板的EMC性能会造成一定的影响,这种影响可能是消极的,也可能是积极的。

发表于 2019-08-23 16:37 7次阅读
pcb设计开槽对EMI的不良影响怎样来改良

为PCB散热的方法你了解几个

对于电子设备来说,工作时都会产生一定的热量,从而使设备内部温度迅速上升,如果不及时将该热量散发出去,...

发表于 2019-08-23 16:32 4次阅读
为PCB散热的方法你了解几个

这里的PCB设计制作专业术语你知道哪些

指绕接通孔壁外平贴在板面上的铜环而言。在内层板上此孔环常以十字桥与外面大地相连,且更常当成线路的端点...

发表于 2019-08-23 16:28 4次阅读
这里的PCB设计制作专业术语你知道哪些

PCB布局陷阱你遇到过哪些

工作频率介于315MHz到915MHz之间的不同频段,Tx和Rx功率介于-120dBm至+13dBm...

发表于 2019-08-23 16:22 5次阅读
PCB布局陷阱你遇到过哪些

PCB安全间距是怎样来设计的

PCB上器件在装贴时,要考虑到水平方向上和空间高度上会不会与其他机械结构有冲突。

发表于 2019-08-23 16:18 6次阅读
PCB安全间距是怎样来设计的

PCB设计常见的误区有哪些

在建库期间,一定要考虑器件焊盘,因为无铅的焊接时,温度会相对提高,会对焊点造成一定的影响。

发表于 2019-08-23 16:15 5次阅读
PCB设计常见的误区有哪些

PCB设计电源平面应该怎样考虑哪些因素

电源平面的处理,在 PCB设计中占有很重要的地位。

发表于 2019-08-23 16:08 6次阅读
PCB设计电源平面应该怎样考虑哪些因素

电源PCB设计中你需要注意什么问题

焊点的距离太小,不利于人工焊接,只能以降低工效来解决焊接质量。否则将留下隐患。

发表于 2019-08-23 16:01 5次阅读
电源PCB设计中你需要注意什么问题

PCB热设计如何来检验

热电偶测温的使用范围非常广泛,所遇到的问题也是多种多样。

发表于 2019-08-23 15:02 7次阅读
PCB热设计如何来检验

PCB设计每一层都代表着什么

通常简称为内电层,仅在多层板中出现,PCB板层数一般是指信号层和内电层相加的总和数。

发表于 2019-08-23 14:42 13次阅读
PCB设计每一层都代表着什么

模拟电路设计手册(晋级应用指南)高清书签版

发表于 2019-08-23 14:40 44次阅读
模拟电路设计手册(晋级应用指南)高清书签版

印制板有着怎样的设计要求

印制板设计最基本、最重要的要求,准确实现电原理图的连接关系,避免出现“短路”和“断路”这两个简单而致...

发表于 2019-08-23 14:37 12次阅读
印制板有着怎样的设计要求

PCB出现开路怎样来改善

PCB出现开路改善方法

发表于 2019-08-23 14:31 11次阅读
PCB出现开路怎样来改善

PCB板镀铜保护剂层是干什么用的

用了镀铜保护剂电镀铜层层在空气中没那么容易被氧化,不用的话就极度容易氧化。

发表于 2019-08-23 14:27 11次阅读
PCB板镀铜保护剂层是干什么用的

PCB杂色费及阻焊知识你了解多少

主要原因是杂色油墨使用少,占产能,会影响整个工厂的运作效率。

发表于 2019-08-23 14:22 10次阅读
PCB杂色费及阻焊知识你了解多少

pcb设计须知哪些

PCB学习是一个漫长的过程,每个软件也有自身的特点与优势,PCB工程师们要根据自身的设计需求,选择适...

发表于 2019-08-23 14:17 13次阅读
pcb设计须知哪些

怎样保证走外层的信号与走内层的信号满足时序的要求?

发表于 2019-08-23 13:30 11次阅读
怎样保证走外层的信号与走内层的信号满足时序的要求?

AltiumDesigner画图不求人34 修改单一元器件编号的位置

发表于 2019-08-23 12:05 117次阅读
AltiumDesigner画图不求人34 修改单一元器件编号的位置

PCB设计名词你都懂吗

指绕接通孔壁外平贴在板面上的铜环而言。在内层板上此孔环常以十字桥与外面大地相连,且更常当成线路的端点...

发表于 2019-08-23 11:52 19次阅读
PCB设计名词你都懂吗

PCB线路板怎样才可以检测的好

电压测量或用示波器探头测试波形时,表笔或探头不要由于滑动而造成集成电路引脚间短路,在与引脚直接连通的...

发表于 2019-08-23 11:45 17次阅读
PCB线路板怎样才可以检测的好

请问大家进行PCB内存布线是手工还是自己来?

发表于 2019-08-23 11:40 11次阅读
请问大家进行PCB内存布线是手工还是自己来?

PCB设计接地的类型有哪一些

随着电子技术的发展,电子产品的产品功能越来越强大。

发表于 2019-08-23 11:40 12次阅读
PCB设计接地的类型有哪一些

PCB中铺铜是为什么

铺铜大的好处是降低地线阻抗(所谓抗干扰也有很大一部分是地线阻抗降低带来的)数字电路中存在大量尖峰脉冲...

发表于 2019-08-23 11:31 17次阅读
PCB中铺铜是为什么

pcb的发展趋势是怎样的

电子设备要求高性能化、高速化和轻薄短小化,而作为多学科行业--PCB是高端电子设备最关键技术。

发表于 2019-08-23 11:24 15次阅读
pcb的发展趋势是怎样的

PCB设计有哪一些误区

自动布线必然要占用更大的PCB面积,同时产生比手动布线多好多倍的过孔。

发表于 2019-08-23 11:21 13次阅读
PCB设计有哪一些误区

怎样可以高效的自动pcb布线

怎样可以高效的自动pcb布线

发表于 2019-08-23 11:14 11次阅读
怎样可以高效的自动pcb布线

PCB线路版有什么特殊的过程

线路板PCB加工特殊制程作为在PCB行业领域的人士来说,对于PCB抄板,PCB设计相关制程必须得熟练...

发表于 2019-08-23 11:03 13次阅读
PCB线路版有什么特殊的过程

设计PCB的要点是什么

随着现场可编程门阵列(FPGA)已发展成为真正的可编程系统级芯片,利用这些芯片设计印制电路板(PCB...

发表于 2019-08-23 10:58 11次阅读
设计PCB的要点是什么

开关电源的PCB设计是个怎样的规范

在任何开关电源设计中,PCB板的物理设计都是最后一个环节。

发表于 2019-08-23 10:53 16次阅读
开关电源的PCB设计是个怎样的规范

电镀镍工艺在pcb板上有什么应用

作用与特性PCB(是英文PrintedCircuieBoard印制线路板的简称)上用镀镍来作为贵金属...

发表于 2019-08-23 10:49 12次阅读
电镀镍工艺在pcb板上有什么应用

不可忽略的细节!电路去耦设计详解

发表于 2019-08-23 10:48 134次阅读
不可忽略的细节!电路去耦设计详解

pcb行业持续发展的动力来自于哪里

印制电路的创新,基础在于技术创新。噪印制电子电路(PEC)给PCB产品和生产工艺带来了革命性变化。

发表于 2019-08-23 10:45 15次阅读
pcb行业持续发展的动力来自于哪里

线路板PCB油墨有哪些技术性能

PCB油墨品质是否优异,原则上不可能脱离以上几大组分的组合。

发表于 2019-08-23 10:40 15次阅读
线路板PCB油墨有哪些技术性能

PCB芯片封装怎样来焊接

板上芯片封装(COB),半导体芯片交接贴装在印刷线路板上,芯片与基板的电气连接用引线缝合方法实现,芯...

发表于 2019-08-23 10:36 13次阅读
PCB芯片封装怎样来焊接

pcb行业面对怎样的挑战

作为电子产品的关键互连件,PCB素有“电子系统产品之母”的称誉。

发表于 2019-08-23 10:33 14次阅读
pcb行业面对怎样的挑战

RF电路板分区的pcb布线有着怎样的技巧

电源分配可能对设计者来说是一个噩梦,为了延长电池寿命,电路的不同部分是根据需要而分时工作的,并由软件...

发表于 2019-08-23 10:30 9次阅读
RF电路板分区的pcb布线有着怎样的技巧

水平电镀的发展具备怎样的优势

水平电镀技术的发展不是偶然的,而是高密度、高精度、多功能、高纵横比多层印制电路板产品特殊功能的需要,...

发表于 2019-08-23 10:26 8次阅读
水平电镀的发展具备怎样的优势

电路板PCB测试性技术的发展过程是怎样的

功能测试技术的复兴是表面贴装器件和电路板小型化的必然结果。

发表于 2019-08-23 10:20 11次阅读
电路板PCB测试性技术的发展过程是怎样的

PCB LAYOUT特殊的走线有什么技巧可言

驱动端发送两个等值、反相的信号,接收端通过比较这两个电压的差值来判断逻辑状态“0”还是“1”。

发表于 2019-08-23 10:17 8次阅读
PCB LAYOUT特殊的走线有什么技巧可言

高质量的pcb设计是怎样形成的

组件布置合理是设计出优质的PCB图的基本前提。关于组件布置的要求主要有安装、受力、受热、信号、美观六...

发表于 2019-08-23 10:13 7次阅读
高质量的pcb设计是怎样形成的

PCB检测技术是怎样的一项技术

对于二次元影像仪的应用,我们都知道它是有着极为广泛的应用领域的

发表于 2019-08-23 10:11 9次阅读
PCB检测技术是怎样的一项技术

PCB设计中EMC/EMI的仿真是怎么一回事

信号完整性分析包括同一布线网络上同一信号的反射分析,阻抗匹配分析,信号过冲分析,信号时序分析等等;对...

发表于 2019-08-23 10:06 9次阅读
PCB设计中EMC/EMI的仿真是怎么一回事

如何分析整流电路前端串的电容有什么作用?

发表于 2019-08-23 10:06 178次阅读
如何分析整流电路前端串的电容有什么作用?

一种开关切换

发表于 2019-08-23 10:05 35次阅读
一种开关切换

PCB走线宽度变化会带来什么

在进行PCB布线时,经常会发生这样的情况:走线通过某一区域时,由于该区域布线空间有限,不得不使用更细...

发表于 2019-08-23 10:03 6次阅读
PCB走线宽度变化会带来什么

PCB制板镀覆废液怎样有效的再次利用

PCB制板镀覆废液在综合利用上投资,能够节约资金降低成本。

发表于 2019-08-23 10:00 7次阅读
PCB制板镀覆废液怎样有效的再次利用

汽车PCB缺陷怎样来弥补

汽车电子市场是继电脑、通讯之后PCB的第三大应用领域。

发表于 2019-08-23 09:52 5次阅读
汽车PCB缺陷怎样来弥补

水平电镀工艺在pcb行业有没有应用

PCB制造向多层化、积层化、功能化和集成化方向迅速的发展。

发表于 2019-08-23 09:49 6次阅读
水平电镀工艺在pcb行业有没有应用

pcb羁基板主要会出现什么问题

PCB设计时候。在可能条件下,从整个印制板上取走重的元件,或在浸焊操作后装上。

发表于 2019-08-23 09:44 6次阅读
pcb羁基板主要会出现什么问题

混合信号电路板有什么设计的准则

模拟电路的工作依赖连续变化的电流和电压。

发表于 2019-08-23 09:40 8次阅读
混合信号电路板有什么设计的准则

pcb共阻抗及抑制是怎么一回事

共阻干扰是由PCB上大量的地线造成。

发表于 2019-08-23 09:37 9次阅读
pcb共阻抗及抑制是怎么一回事

pcb多功能调音台采用了什么工艺

总谐波失真+噪声:话筒增益30dB、-20dBu输入、最大输出、1kHz和推子在±0dB时: ≤0....

发表于 2019-08-23 09:34 7次阅读
pcb多功能调音台采用了什么工艺

PCB板翘曲的问题如何解决

线路板翘曲会造成元器件定位不准;板弯在SMT,THT时,元器件插脚不整,将给组装和安装工作带来不少困...

发表于 2019-08-23 09:24 29次阅读
PCB板翘曲的问题如何解决

smt生产过程中如何防静电

静电是一种电能,它存留于物体表面,是正负电荷在局部范围内失去平衡的结果,是通过电子或离子的转换而形成...

发表于 2019-08-23 09:20 9次阅读
smt生产过程中如何防静电

开关电源PCB板的物理设计你了解多少

参数设置相邻导线间距必须能满足电气安全要求,而且为了便于操作和生产,间距也应尽量宽些。

发表于 2019-08-23 09:16 10次阅读
开关电源PCB板的物理设计你了解多少

PCB设计四层板绘制有什么技巧可言

其中绘制原理图的过程涉及到元件的绘制和封装的绘制,掌握这两种绘制原理图基本不成问题了。

发表于 2019-08-23 09:13 20次阅读
PCB设计四层板绘制有什么技巧可言

PCB制板过孔大小怎样来选择

随着目前电子产品的功能越来越复杂,功耗越来越大;系统产生的热量也越来越大,而PCB的集成密度却越来越...

发表于 2019-08-23 09:08 9次阅读
PCB制板过孔大小怎样来选择

PCB的器件布局需要注意哪些问题

在PCB板的设计中,布局是一个非常重要的环节。

发表于 2019-08-23 09:02 16次阅读
PCB的器件布局需要注意哪些问题

PCB生产过程中产生了污染物该怎么办

PCB生产过程中产生的污染物的处理方法

发表于 2019-08-23 09:01 50次阅读
PCB生产过程中产生了污染物该怎么办

贴标机PCB抄板有什么新的创新

在中国“世界工厂”发展的如火如荼时,自动化设备、工业机器人也顺势而生。

发表于 2019-08-23 08:58 7次阅读
贴标机PCB抄板有什么新的创新

pcb自动布线怎样来设置

设置拐角模式(Rules Corners):定义PCB设计布线时拐角的形状以及最小和最大的允许尺寸。

发表于 2019-08-23 08:55 7次阅读
pcb自动布线怎样来设置

请问PWM形式供电的电流 有效值与平均值怎么算?

发表于 2019-08-23 08:44 152次阅读
请问PWM形式供电的电流 有效值与平均值怎么算?

动态链接技术在PCB中有什么优势?

发表于 2019-08-23 07:59 4次阅读
动态链接技术在PCB中有什么优势?

如何统一改PCB中焊盘的大小?

发表于 2019-08-23 00:47 6次阅读
如何统一改PCB中焊盘的大小?

NCP140 LDO稳压器 150 mA 超低压...

是一款150 mA超低压差稳压器,可为功耗敏感的应用提供出色的电压精度和干净的输出电压。 NCP140非常适合电池供电的应用,因为它具有非常低的静态电流,在禁用模式下几乎为零电流。该器件具有或不具有输出电容器,并且可以最小化占位面积和BOM。 XDFN4软件包经过优化,适用于空间受限的应用程序。 特性 优势 无盖设计 节省PCB面积和成本 使用任何类型的电容器稳定 简单设计 工作输入电压范围:1.6 V至5.5 V 非常适合电池供电的应用 热关断和限流保护 坚固的设计和高可靠性 +/- 1%典型的Vout准确度 功率敏感设备的精确Vout 提供两个XDFN4软件包 ...

发表于 2019-08-16 15:52 6次阅读
NCP140 LDO稳压器 150 mA 超低压...

ESDR0524P ESD保护二极管 超低电容 ...

24P旨在保护高速数据线免受ESD影响。超低电容和低ESD钳位电压使该器件成为保护电压敏感高速数据线的理想解决方案。流通型封装允许简单的PCB布局和匹配的走线长度,以保持高速差分线(如HDMI)之间的一致阻抗。 特性 低电容( 0.3 pF典型,I / O到I / O) 3B级(超过8kV)的ESD额定值人体模型,每机器型号C级(超过400V) IEC标准的保护:IEC 6100- 4-2(12kV接触) UL可燃性等级为94 V-0 这是一个无铅设备 应用 终端产品 HDMI 数字视频接口(DVI) eSATA 数字电视 设置顶盒 Gamin g设备 DVD 电路图、引脚图和封装图...

发表于 2019-08-05 15:02 2次阅读
ESDR0524P ESD保护二极管 超低电容 ...

NUP8011 电涌保护器 低钳位电压

涌保护器专为需要ESD和电涌保护的应用而设计。它适用于敏感设备,如计算机,打印机,商业机器,通信系统和其他应用程序。其集成设计仅使用一个封装即可为八条独立线路提供非常有效和可靠的保护。这些设备非常适用于电路板空间非常宝贵的情况。 特性 优势 低电容 保护线路免受瞬态电压的影响 低漏电流

发表于 2019-08-05 11:02 2次阅读
NUP8011 电涌保护器 低钳位电压

NUP45V6 用于ESD保护的低电容5.6 V...

成式电涌保护器设备专为需要防止ESD和浪涌事件的应用而设计。它旨在用于敏感设备,如无线耳机,PDA,数码相机,计算机,打印机,通信系统和其他应用程序。集成设计仅使用一个封装即可为四条独立线路提供非常有效和可靠的保护。该设备非常适用于电路板空间非常宝贵的情况。 特性 优势 ESD保护:IEC61000-4-2; 4级 为ESD标准提供保护:IEC61000,HBM 保护的四个单独的单向配置 保护四条线免受瞬态电压条件的影响 低漏电流...

发表于 2019-08-05 10:02 7次阅读
NUP45V6 用于ESD保护的低电容5.6 V...

NUP412V 用于ESD保护的低电容12 V阵...

成ESD保护器器件专为需要ESD和浪涌保护的应用而设计。它旨在用于敏感设备,如无线耳机,PDA,数码相机,计算机,打印机,通信系统和其他应用程序。这种集成设计仅使用一个封装即可为四条独立的线路提供非常有效和可靠的保护。该设备非常适用于电路板空间非常宝贵的情况。 特性 优势 ESD保护:IEC61000-4-2:第4级 为ESD行业标准提供保护:IEC61000,HBM 用于保护的四个单独的单向配置 针对瞬态电压条件保护四条线 低泄漏电流...

发表于 2019-08-05 06:02 8次阅读
NUP412V 用于ESD保护的低电容12 V阵...

NCAT00LKT002G4 用于ZigBee®...

NCS36510 设备的认证RF PCB模块,能够在IEEE 802.15.4 PHY / MAC或其他兼容协议(如ZigBee)上运行专有应用程序。该模块经过完全认证在美国,加拿大,欧洲和日本运营。 该模块与ZigBee 3.0堆栈结合使用时,预先认证为符合ZigBee Alliance标准的平台。 下面提供了802.15.4 MAC层演示应用程序和软件开发工具包(SDK)。 还提供ZigBee 3.0 SDK,其中包含完整的硬件驱动程序和板级支持包,并包含多个应用程序演示和堆栈开发文档。 两个SDK都是IAR Workbench项目,需要7.80.02或更高版本。 特性 优势 Tx功率为8.5 dBm 长射程 Rx灵敏度-97dBm 长射程 18个GPIO和4个ADC引脚 传感器和外围连接 完全通过全球监管标准认证 FCC(美国) CE(欧洲) IC(加拿大) MIC(日本) 应用 终端产品 物联网(IoT) IEEE 802.15.4 连接到家 - 安全,自动化, LIG 建筑和工业自动化 智能计量 ZigBee,Thread,6LoWPAN和ISA100以及任何802.15.4协议 消费者电子 能量收集和/或电池供电的传感器节点 智能电表 恒温器 电子安全装置...

发表于 2019-08-01 22:02 8次阅读
NCAT00LKT002G4 用于ZigBee®...

FUSB3301 USB Type-C仅源控制器

01是仅使用自主电源的Type-C控制器,针对移动充电器和电源适配器进行了优化。该器件使用USB Type-C标准通过CC1 / CC2广播充电器的可用电流,并防止VBUS被断言,直至验证了有效连接。该器件适用于使用Type-C协议的最高15 W充电.FUSB3301具有非常低的待机功耗,采用0.5 mm节距封装,适用于电源适配器PCB。 特性 完全自主型Type-C控制器 支持Type-C版本1.1 固定电源模式 低待机功率:I CC =5μA(典型值) VBUS开关控制 宣告三个标准Type-C VBUS电流水平(900 mA,1.5 A,3.0 A) 2 kV HBM ESD保 10引脚,MLP封装 V DD 工作电压范围,3.0 V-5.5 V 终端产品 移动充电器 电源适配器 电路图、引脚图和封装图...

发表于 2019-08-01 16:02 8次阅读
FUSB3301 USB Type-C仅源控制器

FSA2147 音频和有线或USB2.0高速(4...

7是一款双刀单掷(DPST)开关。音频路径默认为音频静音,通过/ OE使能。当V CC = 0V保证信号隔离时,FSA2147的通用端口具有断电特性。 特性 未选择的音频路径上的内置端子禁止音频爆音。 6pF典型关断电容 2.5Ω典型导通电阻 负摆幅能力 断电保护 流通引脚排列无需PCB过孔 应用 多媒体平板电脑 存储和外设 手机 WLAN网卡和宽带接入 PMP / MP3播放器 电路图、引脚图和封装图...

发表于 2019-08-01 05:02 4次阅读
FSA2147 音频和有线或USB2.0高速(4...

FSHDMI08 宽带宽差分信号的HDMI开关

08是一个宽带宽开关,设计用于路由HDMI链接数据,时钟和相关在UXGA分辨率情况下支持每通道高达1.65Gbps数据速率的DDC和CEC控制信号。应用包括LCD电视,DVD,机顶盒和使用多个数据视频接口的笔记本设计。该开关支持HDMI链路信号通路,具有超低非相邻通道串扰和超低的隔离特性。此性能对于尽量减少视频应用中有源视频源之间的重开至关重要。此开关的宽带宽允许高速差分信号以最小的加性歪斜和相位抖动通过开关。引脚支持HDMI标准A连接器PCB布局。 应用 多媒体平板电脑 手机 PMP / MP3播放器 电路图、引脚图和封装图...

发表于 2019-08-01 02:02 4次阅读
FSHDMI08 宽带宽差分信号的HDMI开关

NB7VPQ16M 预加重铜缆/电缆驱动器 12...

16M是一款高性能单通道可编程预加重CML驱动器,带有均衡器接收器,信号增强器,采用1.8 V或2.5 V电源,工作速率高达12.5 Gbps。当与数据/时钟路径串联时,NB7VPQ16M输入将补偿通过FR4 PCB背板或电缆互连传输的降级信号。因此,通过减少铜互连或长电缆损耗引起的符号间干扰ISI来提高串行数据速率。预加重缓冲器通过串行总线通过SDIN,串行数据输入和SCLKI​​N,串行时钟输入,控制输入进行控制,并包含提供16个可编程预加重设置的电路,以选择最佳输出补偿电平。这些可选输出电平将处理各种背板长度和电缆线。前四个SDIN位D3:D0将数字选择0dB至12dB的去加重。对于级联应用,移位的SDIN和SCLKI​​N信号显示在SDOUT和SCLKOUT引脚上。串行数据位的第5位LSB允许启用接收器的均衡功能。差分数据/时钟输入通过VT引脚包含一对内部50欧姆端接电阻,采用100欧姆中心抽头配置,可接受LVPECL,CML或LVDS逻辑电平。此功能在接收器端提供片上传输线端接,消除了外部元件。 特性 最大输入数据速率> 12.5 Gbps 最大输入时钟频率> 8 GHz 驱动高达18英寸的FR4 ...

发表于 2019-07-31 20:02 3次阅读
NB7VPQ16M 预加重铜缆/电缆驱动器 12...

SCP51460 LDO稳压器 20 mA 超低...

60是一款低成本,低功耗,高精度LDO稳压器。该器件在3.3 V固定输出电压下提供高达20 mA的输出电流,具有出色的稳压特性,是精密稳压器应用的理想选择。它设计为在没有输出电容的情况下稳定。当快速上升时间和PCB空间受到关注时,这是一个重要特性。保护功能包括短路电流和反向电压保护。 SCP51460采用3引脚表面贴装SOT-23封装。电路图、引脚图和封装图

发表于 2019-07-31 12:02 12次阅读
SCP51460 LDO稳压器 20 mA 超低...

LC898128DP1 OIS和开放式AF控制L...

28DP1XGTBG是一个系统LSI,集成了片上32位DSP,FLASH ROM和外围设备,包括用于OIS(光学图像稳定)/开放式AF(自动聚焦)控制的模拟电路,恒流驱动器 特性 优势 片上DSP 数字伺服滤波器,陀螺滤波器,4轴OIS软件 小尺寸/超薄芯片 易于放置在小型PCB上 应用 终端产品 OIS相机模块 智能手机 平板电脑 电路图、引脚图和封装图

发表于 2019-07-31 03:02 4次阅读
LC898128DP1 OIS和开放式AF控制L...

NCP51530 高频700 V- 2 A高端和...

30是一款700 V高侧和低侧驱动器,具有高驱动能力,适用于AC-DC电源和逆变器。 NCP51530在高工作频率下提供同类最佳的传播延迟,低静态电流和低开关电流。因此,该器件可为高频工作的电源提供高效设计。 NCP51530采用SOIC8和DFN10封装。 特性 优势 高压范围:高达700 V AC / DC设计的设计余量 传播延迟非常快(B版本为25 ns) ) 适合高频操作 匹配传播延迟(最大7 ns) 提高效率&安培;允许并联 高达50 V / ns的高dv / dt抗扰度和负瞬态抗扰度 非常稳健的设计 DFN10封装,具有优化的引脚输出 小PCB占位面积,改善的爬电距离和寄生 快速上升和下降时间(最长15 ns) 适合重载 应用 终端产品 半满和满-bridge Converters 有源钳位反激式适配器 电机控制电源 服务器,电信和工业用电源 电动助力转向 太阳能逆变器 电路图、引脚图和封装图...

发表于 2019-07-31 01:02 13次阅读
NCP51530 高频700 V- 2 A高端和...

NCV8186 LDO稳压器 1 A 超低压差 ...

6是一款极低压降稳压器,可提供高达1 A的负载电流,并在-40至85°C范围内保持1.0%的出色输出电压精度。工作输入电压范围为1.8 V至5.5 V,使该器件适用于锂离子电池供电的产品以及后调节应用。该产品提供多种固定输出电压选项,其他产品可根据要求提供,范围为1.2 V至3.9 V.NCP186具有完全的过热保护和输出短路保护。启用功能。小型8针DFN8 2 mm x 2 mm封装使该器件特别适用于空间受限的应用。 特性 优势 1.8 V至5.5 V工作输入电压范围 适用于锂离子电池或后期调节应用 根据要求提供多种固定输出电压选项和其他选项,范围为1.2 V至3.9 V 设计灵活性 Typ的低静态电流。 90μA 延长电池寿命 极低压差:100 mV典型值。在Iout = 1 A(3.0V版本) 扩展电池范围 1 kHz PSRR时高75 dB 适用于噪声敏感电路 内部软启动 限制浪涌电流 在-40至85℃温度范围内的±1.0%精度 高输出电压精度 热关断和限流保护 保护产品和系统免受损坏 使用小型1μF陶瓷电容器稳定 节省PCB空间和系统成本 应用 终端产品 电池供电设备 便携...

发表于 2019-07-30 17:02 4次阅读
NCV8186 LDO稳压器 1 A 超低压差 ...

NCV59800 LDO稳压器 1 A 低压差 ...

00是1 A低压差线性稳压器(LDO)系列,提供高电源纹波抑制(PSRR)和超低输出噪声。该系列LDO采用先进的BiCMOS工艺实现了非常好的电气性能。它是电信设备中使用的噪声敏感模拟RF前端的理想选择。 NCV59800采用3 mm x 3 mmDFN8封装。 特性 优势 2.2 V至5.5 V工作输入电压范围 适用于锂离子电池或后期调节应用 低典型静态电流。 60μA 延长电池寿命 极低压差:200 mV典型值。在Iout = 1 A(Vout = 2.5 V) 扩展电池范围 极低噪音,15μVrms/ V通常 适用于噪音敏感的应用程序 可调软启动 限制浪涌电流 线路精度±2.5%。负载和温度范围 高输出电压精度 热关断和电流限制保护 保护产品和损坏的系统 使用4.7μF陶瓷输出电容稳定 节省PCB空间和系统成本 应用 终端产品 电信基础设施 汽车信息娱乐系统 高速I / F(PLL / VCO) 电信设备 网络设备 工业控制 电路图、引脚图和封装图...

发表于 2019-07-30 16:02 12次阅读
NCV59800 LDO稳压器 1 A 低压差 ...

NCV4295C LDO稳压器 30 mA 超低...

5C是一款单片集成低压差稳压器,输出电流能力为30 mA,采用TSOP-5封装。输出电压精确度在±4.0%以内,最大压差为250 mV,输入电压高达45 V.低静态电流通常在1 mA负载下仅消耗160μA电流。在输出欠压的情况下,电源故障输出被驱动为低电平。该器件非常适用于汽车和所有电池供电的微处理器设备。调节器具有防止电池反接,短路和热过载的条件。 特性 优势 极低压差65 mV(典型值)。 (最大250 mV),20 mA负载电流 在起动过程中以较低的输入电压运行。 电源故障输出 关于稳压器输出欠压,PCB上没有外部上拉电阻的即时信息 保护: 60 V瞬态输入电压反极性和反向偏压保护电流限制热关断 适用于恶劣的汽车环境。 3.3 V,5.0 V,±4%输出电压精度,在整个温度范围内,最高30 mA AEC-Q100 1级合格且PPAP能力 应用 终端产品 汽车通用 汽车 电路图、引脚图和封装图...

发表于 2019-07-30 14:02 4次阅读
NCV4295C LDO稳压器 30 mA 超低...

NCP786L 线性稳压器 5 mA 450 V...

L是一款高性能5 mA低压差(LDO)线性稳压器,提供非常宽的工作输入电压范围,最高工作电压为450 V DC,最大工作电压为700 V DC。它是高输入电压应用的理想选择,如工业和家庭自动化,智能计量,家用电器。 NCP786L提供±5%的输出电压精度,极高的电源抑制比和10μA的超低静态电流。 NCP786L非常适合恶劣的环境条件。 NCP786L提供可调电压调节器,输出电压范围为1.27 V至15 V. SOT-223封装提供可接受的热性能和较小的PCB尺寸。 特性 优势 工作输入电压:高达450 VDC 允许直接交流电源连接 PSRR:60 Hz时70 dB 有效降低输入纹波 静态电流:典型值10μA 大大降低空载功耗 SOT-223软件包 非常适合空间受限的应用程序 应用 终...

发表于 2019-07-30 14:02 4次阅读
NCP786L 线性稳压器 5 mA 450 V...

NCP785A 线性稳压器 10 mA 450 ...

A是一款高性能> 10mA线性稳压器,可提供高达450 V DC工作和700V DC最大工作输入电压范围。它是工业和家庭自动化等高输入电压应用的理想选择,智能电表,家电。 NCP785A提供±5%的输出电压精度,极高的电源抑制比和典型的超低静态电流。 15μA。 NCP785A非常适合恶劣的环境条件.NCP785A提供固定输出电压:3.3 V,5.0 V,12 V,15 V.SOT-89封装提供良好的散热性能和非常小的PCB尺寸。 特性 优势 工作输入电压:高达450 VDC 允许直接交流电源连接 PSRR:120 Hz时为80 dB 有效降低输入纹波 静态电流:15μA典型值 大大降低空载功耗 SOT89包 非常适合空间受限的应用 应用 终端产品 工业,家庭自动化,白色家电,照明 低功耗MCU应用电源 尺寸更小,无负载高效替代电容式滴管 断路器 烟雾传感器 家用电器 智能电表 电路图、引脚图和封装图...

发表于 2019-07-30 12:02 6次阅读
NCP785A 线性稳压器 10 mA 450 ...

NCP4688 LDO稳压器 150 mA 低压...

8是一款CMOS 150mA LDO线性稳压器,具有高输出电压精度,具有低噪声输出电压和高纹波抑制性能。低输出噪声电平10uVrms通常保持在任何输出电压。非常常见的SOT23-5封装和小型uDFN 1x1封装适用于工业应用,便携式通信设备和RF模块。 特性 优势 非常高的80 dB PSRR 非常好的噪音消除装置 非常小的包装1x1mm 非常浓缩的PCB的想法 应用 家用电器,工业设备 有线电视盒,卫星接收器,娱乐系统 汽车音响设备,导航系统 笔记本电脑适配器,液晶电视,无线电话和专用局域网系统 电路图、引脚图和封装图...

发表于 2019-07-30 10:02 203次阅读
NCP4688 LDO稳压器 150 mA 低压...

NCP59800 LDO稳压器 1 A 低压差 ...

00是1 A低压差线性稳压器(LDO)系列,提供高电源纹波抑制(PSRR)和超低输出噪声。该系列LDO采用先进的BiCMOS工艺实现了非常好的电气性能。它是电信设备中使用的噪声敏感模拟RF前端的理想选择。 NCP59800采用3 mm x 3 mmDFN8封装。 特性 优势 2.2 V至6.0 V工作输入电压范围 适用于锂离子电池或后期调节应用 低典型静态电流。 60μA 延长电池寿命 极低压差:200 mV典型值。在Iout = 1 A(Vout = 2.5 V) 扩展电池范围 极低噪音,15μVrms/ V通常 适用于噪音敏感的应用程序 可调软启动 限制浪涌电流 线路精度±2.5%。负载和温度范围 高输出电压精度 热关断和电流限制保护 保护产品和损坏的系统 使用4.7μF陶瓷输出电容稳定 节省PCB空间和系统成本 应用 终端产品 电信基础设施 音频 高速I / F(PLL / VCO) 电信设备 工业控制 网络设备 电路图、引脚图和封装图...

发表于 2019-07-30 09:02 62次阅读
NCP59800 LDO稳压器 1 A 低压差 ...

NCP177 LDO稳压器 500 mA 低压降...

是一款超低压降稳压器,可提供高达0.5 A的负载电流,并在25°C时保持0.8%的出色输出电压精度。 1.6 V至5.5 V的工作输入电压范围使该器件适用于锂离子电池供电产品以及后调节应用。该产品提供多种固定输出电压选项,其他产品可根据要求提供,范围为0.7 V至3.6 V.NCP177可完全防止过热和输出短路。启用功能。小型4引脚XDFN4 1.0 mm x 1.0 mm封装使该器件特别适用于空间受限的应用。 特性 优势 1.6 V至5.5 V工作输入电压范围 适用于锂离子电池或后期调节应用 根据要求提供多种固定输出电压选项和其他选项,范围为0.7 V至3.6 V 设计灵活性 Typ的低静态电流。 60μA 延长电池寿命 极低压差:200 mV典型值。在Iout = 0.5 A(1.8V版本) 扩展电池范围 1 kHz PSRR时高75 dB 适用于噪声敏感电路 内部软启动 限制浪涌电流 室温下±0.8%精度 高输出电压精度 热关断和限流保护 保护产品和系统免受损坏 使用小型1μF陶瓷电容器稳定 节省PCB空间和系统成本 应用 终端产品 电池供电设备 便携式通信设备 相机,图像传感器...

发表于 2019-07-30 07:02 6次阅读
NCP177 LDO稳压器 500 mA 低压降...

NCP3101 同步降压稳压器 PWM 6.0 ...

1是一款高效率,宽输入,高输出电流,同步脉冲宽度调制(PWM)降压稳压器,采用2.7 V至18 V电源供电。该器件能够产生低至0.8 V的输出电压.NCP3101可通过内部设置的275 kHz振荡器驱动的MOSFET开关连续输出6 A电流。 40引脚器件提供最佳集成度,以减小电源的尺寸和成本。 NCP3101还集成了外部补偿跨导误差放大器和电容可编程软启动功能。保护功能包括可编程短路保护和欠压锁定(UVLO)。 NCP3101采用40引脚QFN封装。还提供10A版NCP3102。 NCP3101将被NCP3101C替换为每PCN#16498 特性 优势 集成6A开关稳压器 提高功率密度,简化系统级集成 0.8 V +/- 1%内部参考 提高系统级精度 电阻可编程电流限制 优化应用程序的系统保护 275 kHz固定频率操作 效率高(效率> 92%) 6x6 mm QFN封装 减少PCB占位面积和电路板空间需要实施 电容可编程软启动 用于软启动时间可调性的外部电容器 18 mohm内部HS和LS FET 高效运作 2.7 V至18 V电源 宽输入电压范围 应用 终端产品 高功率密度dc-dc 嵌入式...

发表于 2019-07-30 04:02 6次阅读
NCP3101 同步降压稳压器 PWM 6.0 ...

NCP6924 6通道电源管理IC(PMIC) ...

4是安森美半导体迷你电源管理IC系列的一部分。它经过优化,可提供电池供电的便携式应用子系统,如相机模块,微处理器或任何外围设备。该器件集成了两个高效1000 mA降压DC-DC转换器,带有DVS(动态电压调节)和四个低压差(LDO)稳压器,采用WLCSP-30 2.46 x 2.06mm封装。 特性 优势 非常小的封装2.46 x 2.06 mm 减少PCB空间 超低静态电流(典型值105 uA) 节省电池寿命 I 2 C可访问的先前启用设备允许在启动系统之前更改设置 提供设计灵活性 两个DC-DC转换器,效率95%,可编程输出电压0.6 V至3.3 V,12.5 mV步进,1000 mA输出电流能力 四个低噪声,低压差稳压器,可编程输出电压1.0 V至3.3 V,50 mV步进,2 x 150 mA和2 x 300mA输出电流能力,50 uVrms典型低输出噪声 应用 终端产品 电池供电的应用电源管理 核心电压低的处理器的电源 相机模块 外围子系统 USB供电设备 智能手机 平板电脑 可穿戴设备 MP3播放器 电路图、引脚图和封装图...

发表于 2019-07-30 01:02 24次阅读
NCP6924 6通道电源管理IC(PMIC) ...

NCV8177 LDO稳压器 500 mA 高P...

7是CMOS LDO稳压器,具有500 mA输出电流。输入电压低至1.6 V,输出电压可设置为0.75 V.它提供非常稳定和精确的电压,具有低噪声和高电源抑制比(PSRR),适用于RF应用。 NCV8177适用于为汽车信息娱乐系统和其他功率敏感设备的RF模块供电。由于功耗低,NCV8177具有高效率和低散热性。小型4引脚XDFN4 1.0 mm x 1.0 mm封装使该器件特别适用于空间受限的应用。 特性 优势 1.6 V至5.5 V工作输入电压范围 适用于锂离子电池或后期调节应用 根据要求提供多种固定输出电压选项和其他选项,范围为0.7 V至3.6 V 设计灵活性 Typ的低静态电流。 60μA 延长电池寿命 极低压差:200 mV典型值。在Iout = 0.5 A(1.8V版本) 扩展电池范围 1 kHz PSRR时高75 dB 适用于噪声敏感电路 内部软启动 限制浪涌电流 室温下±0.8%精度 高输出电压精度 热关断和限流保护 保护产品和系统免受损坏 使用小型1μF陶瓷电容器稳定 节省PCB空间和系统成本 应用 终端产品 灯光 仪器设备 相机,摄像机,Se nsors 相机 摄...

发表于 2019-07-29 22:02 18次阅读
NCV8177 LDO稳压器 500 mA 高P...

NCP186 LDO稳压器 1 A 超低压差 高...

是一款超低压降稳压器,可提供高达1 A的负载电流,并在-40至85℃范围内保持1.0%的出色输出电压精度。工作输入电压范围为1.8 V至5.5 V,使该器件适用于锂离子电池供电的产品以及后调节应用。该产品提供多种固定输出电压选项,其他产品可根据要求提供,范围为1.2 V至3.9 V.NCP186具有完全的过热保护和输出短路保护。小型8引脚XDFN6 1.2 mm x 1.6 mm封装使该器件成为可能特别适用于空间受限的应用。 特性 优势 1.8 V至5.5 V工作输入电压范围 适用于锂离子电池或后期调节应用 多种固定输出电压选项及其他可根据要求提供1.2 V至3.9 V 设计灵活性 Typ的低静态电流。 90μA 延长电池寿命 极低压差:100 mV典型值。在Iout = 1 A(3.0V版本) 扩展电池范围 1 kHz PSRR时高75 dB 适用于噪声敏感电路 内部软启动 限制浪涌电流 在-40至85℃温度范围内的±1.0%精度 高输出电压精度 热关断和限流保护 保护产品和系统免受损坏 使用小型1μF陶瓷电容器稳定 节省PCB空间和系统成本 应用 终端产品 电池供电设备 便携式通讯设...

发表于 2019-07-29 22:02 16次阅读
NCP186 LDO稳压器 1 A 超低压差 高...

NCP176 LDO稳压器 500 mA 超低压...

是一款超低压差稳压器,可提供高达0.5 A的负载电流,并在25°C时保持0.8%的出色输出电压精度。工作输入电压范围为1.4 V至5.5 V,使该器件适用于锂离子电池供电产品以及后调节应用。该产品提供3.3 V固定输出电压选项,其他电压选项可根据要求提供,范围为0.7 V至3.6 V.NCP176具有完全的过热保护和输出短路保护。小型6引脚XDFN6 1.2 mm x 1.2 mm封装使该设备特别适用于空间受限的应用程序。 特性 优势 1.4 V至5.5 V工作输入电压范围 适用于锂离子电池或后调节应用 几种固定输出电压可根据要求提供的选项和其他选项范围为0.7 V至3.6 V 设计灵活性 Typ的低静态电流。 60μA 延长电池寿命 极低压降:130 mV典型值。在Iout = 0.5 A(2.5V版本) 扩展电池范围 1 kHz PSRR时高75 dB 适用于噪声敏感电路 内部软启动 限制浪涌电流 室温下±0.8%精度 高输出电压精度 热关断和限流保护 保护产品和系统免受损坏 使用小型1μF陶瓷电容器稳定 节省PCB空间和系统成本 应用 终端产品 电池供电设备 便携式通信设备 相机,...

发表于 2019-07-29 22:02 10次阅读
NCP176 LDO稳压器 500 mA 超低压...

HDSP-H1G3 1.0“7段单数字LED显示...

Broadcom HDSP-H1G3是1.0英寸高度系列通孔,7段单位数,基于PCB的LED显示设备的一部分。 HDSP-H1G3提供带右侧小数的绿色数字字符,并具有共阴极(CC)。 功能 高可靠性 优秀字符外观 卤化 符合RoHS标准 带有白色扩散段的灰色顶面 应用 白色家电和电器 黑色商品  机顶盒  游戏机系统

发表于 2019-07-04 10:37 37次阅读
HDSP-H1G3 1.0“7段单数字LED显示...

BCM59121 八路集成符合IEEE 802....

Broadcom® BCM59121是一款高度集成的符合IEEE 802.3bt标准的供电设备(PSE)控制器,具有无与伦比的集成度和灵活性。它包含8个低RDS(0.2Ω)高压传输FET,每个都具有非常精确,无损耗的专有内部电流检测和板载微控制器,所有这些都旨在显着降低以太网供电(PoE)和以太网供电(PoE +)和UPoE设计,同时简化了PCB布局。 BCM59121可在所有可能的故障条件和过载情况下提供出色的保护。它还支持2类(30W)应用的双事件分类和802.3bt标准Type3应用的多事件分类。  BCM59121具有面向网络的主机接口,通过BSC进行通信总线,速度高达2.4 Mb / s 功能  符合IEEE 802.3bt标准,支持IEEE 802.3at和IEEE 802.3af 支持多事件分类(类型2和类型3) 支持四对60W bt Type3(BCM59121)应用程序 支持检测传统功率器件(PD) 多个器件的级联;支持多达64个端口 类型1,类型2和类型3的可编程ICUT和ILIM Broadcom串行控制(BSC),恩智浦I2C兼容总线架构 手动/半自动操作模式 每个端口可用的实时电流,电压和温度测量值 过温保护(警告和关闭) 通过48V电源(标称值)和外部3.3V电源供电 固...

发表于 2019-07-04 10:16 52次阅读
BCM59121 八路集成符合IEEE 802....

BCM59122 八路集成符合IEEE 802....

Broadcom® BCM59122是一款高度集成的符合IEEE 802.3bt标准的供电设备(PSE)控制器,具有无与伦比的集成度和灵活性。它包含8个低RDS(0.2Ω)高压传输FET,每个都具有非常精确,无损耗的专有内部电流检测和板载微控制器,所有这些都旨在显着降低以太网供电(PoE)和以太网供电(PoE +)和UPoE设计,同时简化了PCB布局。 BCM59122可在所有可能的故障条件和过载情况下提供出色的保护。它还支持2类(30W)应用的双事件分类和802.3bt标准Type3 / Type4应用的多事件分类。  BCM59122具有面向网络的主机接口,通过BSC总线,速度高达2.4 Mb / s   功能   符合IEEE 802.3bt标准,支持IEEE 802.3at和IEEE 802.3af 支持多事件分类(类型2,类型3和类型4) 支持四对60W bt Type3和90W bt Type 4应用 支持检测传统功率设备(PD) 多个设备的级联;支持多达64个端口 类型1,类型2,类型3和类型4的可编程ICUT和ILIM Broadcom串行控制(BSC),NXP I2C兼容总线架构 手动/半自动操作模式 每个端口可用的实时电流,电压和温度测量值 过温保护(警告和关闭) 采用48V电源(标称值)...

发表于 2019-07-04 10:15 65次阅读
BCM59122 八路集成符合IEEE 802....

BCM3450 MoCA功率放大器/低噪声放大器...

Broadcom® BCM3450是一款高度集成的低功耗MoCA收发器,在单芯片中集成了低噪声放大器(LNA),功率放大器(PA)和T / R开关。  BCM3450旨在大幅降低MoCA收发器接口的复杂性,取代众多分立元件和大量印刷电路板(PCB)区域。 BCM3450与Broadcom的Integrated MoCA MAC / PHY / Tuner产品线结合使用。 BCM3450经过优化,可与BCM7420,BCM7410,BCM6829和BCM3320连接。 BCM3450的性能符合MoCA 1.0,1.1对噪声系数和线性度的要求。  功能 超越家用电缆的优越性环境 具有千兆无源光网络(GPON)到MoCA网桥,家庭MoCA WAN网络和宽带家庭路由器(BHR)的MoCA网络的单PA / LNA PA功能包括:宽带具有30 dB增益范围,低功率1.2W,输出功率2 dBm(可编程高达5 dBm)和ACPR为50 dBr @ 30 MHz偏移 提供功率放大和连接到同轴MoCA网络适用于集成MoCA MAC / PHY的Broadcom设备 应用程序 机顶盒 ...

发表于 2019-07-04 09:58 38次阅读
BCM3450 MoCA功率放大器/低噪声放大器...